Range conditions for a spherical mean transform
暂无分享,去创建一个
[1] Lihong V. Wang,et al. Photoacoustic imaging in biomedicine , 2006 .
[2] Rakesh,et al. The range of the spherical mean value operator for functions supported in a ball , 2006 .
[3] Richard Courant,et al. Methods of Mathematical Physics, Volume II: Partial Differential Equations , 1963 .
[4] Peter Kuchment,et al. A Range Description for the Planar Circular Radon Transform , 2006, SIAM J. Math. Anal..
[5] R. P. Soni,et al. Formulas and Theorems for the Special Functions of Mathematical Physics , 1967 .
[6] E. T. Quinto,et al. Range descriptions for the spherical mean Radon transform. I. Functions supported in a ball , 2006, math/0606314.
[7] S. G. Gindikin,et al. Integral geometry in affine and projective spaces , 1982 .
[8] L. Ehrenpreis. The Universality of the Radon Transform , 2003 .
[9] Peter Kuchment,et al. On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography , 2007 .
[10] William Rundell,et al. Surveys on solution methods for inverse problems , 2000 .
[11] A. Pinkus,et al. Fundamentality of Ridge Functions , 1993 .
[12] Leifur Ásgeirsson,et al. Über eine Mittelwertseigenschaft von Lösungen homogener linearer partieller Differentialgleichungen 2. Ordnung mit konstanten Koeffizienten , 1937 .
[13] Victor Palamodov. Remarks on the general Funk-Radon transform and thermoacoustic tomography , 2007 .
[14] V. V. Volchkov,et al. Integral Geometry and Convolution Equations , 2003 .
[15] Lihong V. Wang. Photoacoustic imaging and spectroscopy , 2009 .
[16] F. John. Plane Waves and Spherical Means: Applied To Partial Differential Equations , 1981 .
[17] P. Kuchment,et al. Paley-Wiener theorem for exponential Radon transform , 1990 .
[18] Rakesh,et al. The spherical mean value operator with centers on a sphere , 2007 .
[19] R. Novikov,et al. On the range characterization for the two-dimensional attenuated x-ray transformation , 2002 .
[20] On double integrals over spheres , 1988 .
[21] R. P. Soni,et al. Formulas and Theorems for the Special Functions of Mathematical Physics , 1967 .
[22] P. Kuchment. Generalized Transforms of Radon Type and Their Applications , 2005 .
[23] Lihong V. Wang,et al. Biomedical Optics: Principles and Imaging , 2007 .
[24] S. Helgason. The Radon Transform , 1980 .
[25] S. Patch,et al. Thermoacoustic tomography--consistency conditions and the partial scan problem. , 2004, Physics in medicine and biology.
[26] Rakesh,et al. Determining a Function from Its Mean Values Over a Family of Spheres , 2004, SIAM J. Math. Anal..
[27] L. Zalcman. Offbeat Integral Geometry , 1980 .
[28] Eric Todd Quinto,et al. Injectivity Sets for the Radon Transform over Circles and Complete Systems of Radial Functions , 1996 .
[29] S. G. Gindikin,et al. Selected Topics in Integral Geometry , 2003 .
[30] Carlos A. Berenstein,et al. Approximation by spherical waves inLp-spaces , 1996 .
[31] Peter Kuchment,et al. Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.