Range conditions for a spherical mean transform

The paper is devoted to the range description of the Radon type transform that averages a function over all spheres centered on a given sphere. Such transforms arise naturally in thermoacoustic tomography, a novel method of medical imaging. Range descriptions have recently been obtained for such transforms, and consisted of smoothness and support conditions, moment conditions, and some additional orthogonality conditions of spectral nature. It has been noticed that in odd dimensions, surprisingly, the moment conditions are superfluous and can be eliminated. It is shown in this text that in fact the same happens in any dimension.

[1]  Lihong V. Wang,et al.  Photoacoustic imaging in biomedicine , 2006 .

[2]  Rakesh,et al.  The range of the spherical mean value operator for functions supported in a ball , 2006 .

[3]  Richard Courant,et al.  Methods of Mathematical Physics, Volume II: Partial Differential Equations , 1963 .

[4]  Peter Kuchment,et al.  A Range Description for the Planar Circular Radon Transform , 2006, SIAM J. Math. Anal..

[5]  R. P. Soni,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1967 .

[6]  E. T. Quinto,et al.  Range descriptions for the spherical mean Radon transform. I. Functions supported in a ball , 2006, math/0606314.

[7]  S. G. Gindikin,et al.  Integral geometry in affine and projective spaces , 1982 .

[8]  L. Ehrenpreis The Universality of the Radon Transform , 2003 .

[9]  Peter Kuchment,et al.  On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography , 2007 .

[10]  William Rundell,et al.  Surveys on solution methods for inverse problems , 2000 .

[11]  A. Pinkus,et al.  Fundamentality of Ridge Functions , 1993 .

[12]  Leifur Ásgeirsson,et al.  Über eine Mittelwertseigenschaft von Lösungen homogener linearer partieller Differentialgleichungen 2. Ordnung mit konstanten Koeffizienten , 1937 .

[13]  Victor Palamodov Remarks on the general Funk-Radon transform and thermoacoustic tomography , 2007 .

[14]  V. V. Volchkov,et al.  Integral Geometry and Convolution Equations , 2003 .

[15]  Lihong V. Wang Photoacoustic imaging and spectroscopy , 2009 .

[16]  F. John Plane Waves and Spherical Means: Applied To Partial Differential Equations , 1981 .

[17]  P. Kuchment,et al.  Paley-Wiener theorem for exponential Radon transform , 1990 .

[18]  Rakesh,et al.  The spherical mean value operator with centers on a sphere , 2007 .

[19]  R. Novikov,et al.  On the range characterization for the two-dimensional attenuated x-ray transformation , 2002 .

[20]  On double integrals over spheres , 1988 .

[21]  R. P. Soni,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1967 .

[22]  P. Kuchment Generalized Transforms of Radon Type and Their Applications , 2005 .

[23]  Lihong V. Wang,et al.  Biomedical Optics: Principles and Imaging , 2007 .

[24]  S. Helgason The Radon Transform , 1980 .

[25]  S. Patch,et al.  Thermoacoustic tomography--consistency conditions and the partial scan problem. , 2004, Physics in medicine and biology.

[26]  Rakesh,et al.  Determining a Function from Its Mean Values Over a Family of Spheres , 2004, SIAM J. Math. Anal..

[27]  L. Zalcman Offbeat Integral Geometry , 1980 .

[28]  Eric Todd Quinto,et al.  Injectivity Sets for the Radon Transform over Circles and Complete Systems of Radial Functions , 1996 .

[29]  S. G. Gindikin,et al.  Selected Topics in Integral Geometry , 2003 .

[30]  Carlos A. Berenstein,et al.  Approximation by spherical waves inLp-spaces , 1996 .

[31]  Peter Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.