Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family--a sticky pursuit.

The agglutinin-like sequence (ALS) family of Candida albicans includes eight genes that encode large cell-surface glycoproteins. The high degree of sequence relatedness between the ALS genes and the tremendous allelic variability often present in the same C. albicans strain complicated definition and characterization of the gene family. The main hypothesis driving ALS family research is that the genes encode adhesins, primarily involved in host-pathogen interactions. Although adhesive function has been demonstrated for several Als proteins, the challenge of studying putative adhesins in a highly adhesive organism like C. albicans has led to varying ideas about how best to pursue such investigations, and results that are sometimes contradictory. Recent analysis of alsdelta/alsdelta strains suggested roles for Als proteins outside of adhesion to host surfaces, and a broader scope of Als protein function than commonly believed. The availability and use of experimental methodologies to study C. albicans at the genomic level, and the ALS family en masse, have advanced knowledge of these genes and emphasized their importance in C. albicans biology and pathogenesis.

[1]  D. Soll,et al.  Analysis of ALS5 and ALS6 allelic variability in a geographically diverse collection of Candida albicans isolates. , 2007, Fungal genetics and biology : FG & B.

[2]  Xiaomin Zhao,et al.  Deletion of ALS5, ALS6 or ALS7 increases adhesion of Candida albicans to human vascular endothelial and buccal epithelial cells. , 2007, Medical mycology.

[3]  Xiaomin Zhao,et al.  Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells. , 2007, Microbiology.

[4]  R. Walmsley,et al.  Developmental Regulation of an Adhesin Gene during Cellular Morphogenesis in the Fungal Pathogen Candida albicans , 2007, Eukaryotic Cell.

[5]  S. Filler,et al.  Als3 Is a Candida albicans Invasin That Binds to Cadherins and Induces Endocytosis by Host Cells , 2007, PLoS biology.

[6]  Xiaomin Zhao,et al.  Unequal contribution of ALS 9 alleles to adhesion between Candida albicans and human vascular endothelial cells , 2007 .

[7]  Christina A. Cuomo,et al.  Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes , 2007, Genome Biology.

[8]  P. Kahn,et al.  Threonine-Rich Repeats Increase Fibronectin Binding in the Candida albicans Adhesin Als5p , 2006, Eukaryotic Cell.

[9]  H. Nelis,et al.  Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR , 2006, BMC Molecular Biology.

[10]  D. Soll,et al.  Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. , 2006, Microbiology.

[11]  S. Filler,et al.  Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. , 2006, The Journal of infectious diseases.

[12]  A. Mitchell,et al.  Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo , 2006, PLoS pathogens.

[13]  B. Spellberg,et al.  The Anti-Candida Vaccine Based on the Recombinant N-Terminal Domain of Als1p Is Broadly Active against Disseminated Candidiasis , 2006, Infection and Immunity.

[14]  L. Hoyer,et al.  RT-PCR analysis of Candida albicans ALS gene expression in a hyposalivatory rat model of oral candidiasis and in HIV-positive human patients. , 2006, Medical mycology.

[15]  S. Filler,et al.  The Anti-Candida albicans Vaccine Composed of the Recombinant N Terminus of Als1p Reduces Fungal Burden and Improves Survival in Both Immunocompetent and Immunocompromised Mice , 2005, Infection and Immunity.

[16]  Wei Li,et al.  Yeast Model Uncovers Dual Roles of Mitochondria in the Action of Artemisinin , 2005, PLoS genetics.

[17]  M. Zupancic,et al.  A yeast by any other name: Candida glabrata and its interaction with the host. , 2005, Current opinion in microbiology.

[18]  George Newport,et al.  A Human-Curated Annotation of the Candida albicans Genome , 2005, PLoS genetics.

[19]  M. Cormican,et al.  Quantification of ALS1 gene expression in Candida albicans biofilms by RT-PCR using hybridisation probes on the LightCycler. , 2005, Molecular and cellular probes.

[20]  A. Mitchell,et al.  Yeast wall protein 1 of Candida albicans. , 2005, Microbiology.

[21]  Xiaomin Zhao,et al.  Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. , 2005, Microbiology.

[22]  Xiaomin Zhao,et al.  Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. , 2005, Microbiology.

[23]  M. Wallig,et al.  Comparison between Candida albicans Agglutinin-Like Sequence Gene Expression Patterns in Human Clinical Specimens and Models of Vaginal Candidiasis , 2005, Infection and Immunity.

[24]  Xiaomin Zhao,et al.  Use of Green Fluorescent Protein and Reverse Transcription-PCR To Monitor Candida albicans Agglutinin-Like Sequence Gene Expression in a Murine Model of Disseminated Candidiasis , 2005, Infection and Immunity.

[25]  J. Nuessen,et al.  Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. , 2005, Microbiology.

[26]  S. Bergmann,et al.  Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains , 2005, Molecular microbiology.

[27]  S. Filler,et al.  Vaccination with Recombinant N-Terminal Domain of Als1p Improves Survival during Murine Disseminated Candidiasis by Enhancing Cell-Mediated, Not Humoral, Immunity , 2005, Infection and Immunity.

[28]  M. Wellington,et al.  5‐Fluoro‐orotic acid induces chromosome alterations in Candida albicans , 2005, Yeast.

[29]  Louise O’Connora,et al.  Quantification of ALS 1 gene expression in Candida albicans biofilms by RT-PCR using hybridisation probes on the LightCycler e , 2005 .

[30]  C. Nombela,et al.  The GPI-anchored protein CaEcm33p is required for cell wall integrity, morphogenesis and virulence in Candida albicans. , 2004, Microbiology.

[31]  C. D. de Koster,et al.  Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathogen Candida glabrata. , 2004, Microbiology.

[32]  Gary Moran,et al.  Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. , 2004, Microbiology.

[33]  P. Lipke,et al.  Global Cell Surface Conformational Shift Mediated by a Candida albicans Adhesin , 2004, Infection and Immunity.

[34]  K. Hellingwerf,et al.  Proteomic Analysis of Candida albicans Cell Walls Reveals Covalently Bound Carbohydrate-Active Enzymes and Adhesins , 2004, Eukaryotic Cell.

[35]  Mason Zhang,et al.  Functional and Structural Diversity in the Als Protein Family of Candida albicans* , 2004, Journal of Biological Chemistry.

[36]  J. Nuessen,et al.  ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. , 2004, Microbiology.

[37]  George Newport,et al.  The diploid genome sequence of Candida albicans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. Filler,et al.  Functional analysis of the Candida albicans ALS1 gene product , 2004, Yeast.

[39]  C. d’Enfert,et al.  Candida albicans Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns , 2004, Eukaryotic Cell.

[40]  P. Lipke,et al.  Degenerate Peptide Recognition by Candida albicans Adhesins Als5p and Als1p , 2004, Infection and Immunity.

[41]  F. Eisenhaber,et al.  A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. , 2004, Journal of molecular biology.

[42]  Marco M. Kessler,et al.  Identification of potential cell‐surface proteins in Candida albicans and investigation of the role of a putative cell‐surface glycosidase in adhesion and virulence , 2004, Yeast.

[43]  Mahmoud A Ghannoum,et al.  RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. , 2004, Microbiology.

[44]  S. Klotz,et al.  Accessibility of the peptide backbone of protein ligands is a key specificity determinant in Candida albicans SRS adherence. , 2004, Microbiology.

[45]  D. Soll Mating-type locus homozygosis, phenotypic switching and mating: a unique sequence of dependencies in Candida albicans. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[46]  Alexander D. Johnson,et al.  Candida albicans , 2003 .

[47]  D. Soll,et al.  Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. , 2003, Microbiology.

[48]  B. Holland,et al.  Sixty alleles of the ALS7 open reading frame in Candida albicans: ALS7 is a hypermutable contingency locus. , 2003, Genome research.

[49]  K. Hellingwerf,et al.  Genome‐wide identification of fungal GPI proteins , 2003, Yeast.

[50]  P. T. Magee,et al.  Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans , 2002, Molecular microbiology.

[51]  S. Filler,et al.  Contribution of Candida albicans ALS1 to the Pathogenesis of Experimental Oropharyngeal Candidiasis , 2002, Infection and Immunity.

[52]  P. Sundstrom Adhesion in Candida spp , 2002, Cellular microbiology.

[53]  A. Dominguez,et al.  The Golgi GDPase of the Fungal Pathogen Candida albicans Affects Morphogenesis, Glycosylation, and Cell Wall Properties , 2002, Eukaryotic Cell.

[54]  Yee-Chun Chen,et al.  Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway , 2002, Molecular microbiology.

[55]  S. Klotz,et al.  Candida albicans and Saccharomyces cerevisiae Expressing ALA1/ALS5 Adhere to Accessible Threonine, Serine, or Alanine Patches , 2002, Cell communication & adhesion.

[56]  Mahmoud A. Ghannoum,et al.  Biofilm Formation by the Fungal PathogenCandida albicans: Development, Architecture, and Drug Resistance , 2001, Journal of bacteriology.

[57]  Alistair J. P. Brown,et al.  Efg1, a Morphogenetic Regulator in Candida albicans, Is a Sequence-Specific DNA Binding Protein , 2001, Journal of bacteriology.

[58]  Hui Zhao,et al.  Interaction of α-Agglutinin and a-Agglutinin,Saccharomyces cerevisiae Sexual Cell Adhesion Molecules , 2001 .

[59]  M. Zernicka-Goetz,et al.  Use of Green Fluorescent Protein in mouse embryos. , 2001, Methods.

[60]  L. Hoyer,et al.  The ALS gene family of Candida albicans. , 2001, Trends in microbiology.

[61]  J. C. Kapteyn,et al.  Characterization of agglutinin-like sequence genes from non-albicans Candida and phylogenetic analysis of the ALS family. , 2001, Genetics.

[62]  L. Hoyer,et al.  The ALS5 gene of Candida albicans and analysis of the Als5p N‐terminal domain , 2001, Yeast.

[63]  H Zhao,et al.  A CD2‐Based Model of Yeast a‐Agglutinin Elucidates Solution Properties and Binding Characteristics , 2000 .

[64]  L. Hoyer,et al.  The ALS6 and ALS7 genes of Candida albicans , 2000, Yeast.

[65]  A. Johnson,et al.  TUP1, CPH1 and EFG1 make independent contributions to filamentation in candida albicans. , 2000, Genetics.

[66]  A. Verkleij,et al.  The cell wall architecture of Candida albicans wild‐type cells and cell wall‐defective mutants , 2000, Molecular microbiology.

[67]  Xi Chen,et al.  Cloning and Identification of Genes Related with Morphogenesis of Candida albicans. , 2000, Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica.

[68]  Xi Chen,et al.  Cloning and Functional Analysis of ALS Family Genes from Candida albicans. , 2000, Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica.

[69]  S. Klotz,et al.  Overexpression of the Candida albicans ALA1 Gene in Saccharomyces cerevisiae Results in Aggregation following Attachment of Yeast Cells to Extracellular Matrix Proteins, Adherence Properties Similar to Those of Candida albicans , 1999, Infection and Immunity.

[70]  P. Sundstrom,et al.  Adhesins in Candida albicans. , 1999, Current opinion in microbiology.

[71]  L. Hoyer,et al.  Detection of Als Proteins on the Cell Wall ofCandida albicans in Murine Tissues , 1999, Infection and Immunity.

[72]  W. Tanner,et al.  Deletion of New Covalently Linked Cell Wall Glycoproteins Alters the Electrophoretic Mobility of Phosphorylated Wall Components of Saccharomyces cerevisiae , 1999, Journal of bacteriology.

[73]  J. Arnold,et al.  Towards understanding the evolution of the human commensal yeast Candida albicans. , 1999, Microbiology.

[74]  L. Hoyer,et al.  Identification of Candida albicans ALS2 andALS4 and Localization of Als Proteins to the Fungal Cell Surface , 1998, Journal of bacteriology.

[75]  A. Myers,et al.  Candida albicans ALS3 and insights into the nature of the ALS gene family , 1998, Current Genetics.

[76]  C. Abstain Biofilm formation , 1998, Science.

[77]  S. Filler,et al.  Expression of the Candida albicans GeneALS1 in Saccharomyces cerevisiae Induces Adherence to Endothelial and Epithelial Cells , 1998, Infection and Immunity.

[78]  H. Tettelin,et al.  In silicio identification of glycosyl‐phosphatidylinositol‐anchored plasma‐membrane and cell wall proteins of Saccharomyces cerevisiae , 1997, Yeast.

[79]  S. Klotz,et al.  Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins , 1997, Infection and immunity.

[80]  R. Kinne,et al.  Endothelial and epithelial cells: general principles of selective vectorial transport. , 1997, International journal of microcirculation, clinical and experimental.

[81]  P. Kahn,et al.  Structure of Saccharomyces cerevisiae alpha-agglutinin. Evidence for a yeast cell wall protein with multiple immunoglobulin-like domains with atypical disulfides. , 1995, The Journal of biological chemistry.

[82]  M. Tuite,et al.  The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. , 1995, Nucleic acids research.

[83]  G. P. Livi,et al.  Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif , 1995, Molecular microbiology.

[84]  R. Rachel,et al.  Mating type‐specific cell‐cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a‐ and alpha‐agglutinin. , 1994, The EMBO journal.

[85]  P. Lipke,et al.  Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin, a member of the immunoglobulin superfamily , 1993, Molecular and cellular biology.

[86]  K. Hauser,et al.  Purification of the inducible α‐agglutinin of S. cerevisiae and molecular cloning of the gene , 1989 .

[87]  P. Lipke,et al.  AG alpha 1 is the structural gene for the Saccharomyces cerevisiae alpha-agglutinin, a cell surface glycoprotein involved in cell-cell interactions during mating , 1989, Molecular and cellular biology.

[88]  W. Chaffin,et al.  Germ tube formation from zonal rotor fractions of Candida albicans , 1976, Journal of bacteriology.

[89]  A. Kahn,et al.  The Cell Surface , 1974, Advances in Experimental Medicine and Biology.

[90]  F. Tristani DISSEMINATED CANDIDIASIS. , 2020, Boletin de la Asociacion Medica de Puerto Rico.

[91]  L. Ang,et al.  Control of Development in Higher Plants, P.R. Bell, R.I. Pennell, C.J. Leaver (Eds.). The Royal Society (1995), 0962 8436 , 1996 .