Periodic boxcar deconvolution and diophantine approximation

We consider the nonparametric estimation of a periodic function that is observed in additive Gaussian white noise after convolution with a boxcar, the indicator function of an interval. This is an idealized model for the problem of recovery of noisy signals and images observed with motion blur. If the length of the boxcar is rational, then certain frequencies are irretreviably lost in the periodic model. We consider the rate of convergence of estimators when the length of the boxcar is irrational, using classical results on approximation of irrationals by continued fractions. A basic question of interest is whether the minimax rate of convergence is slower than for nonperiodic problems with 1/f-like convolution filters. The answer turns out to depend on the type and smoothness of functions being estimated in a manner not seen with homogeneous filters.

[1]  R. Kanwal Linear Integral Equations , 1925, Nature.

[2]  Alan Baker,et al.  DIOPHANTINE APPROXIMATION (Lecture Notes in Mathematics, 785) , 1981 .

[3]  G. Wahba Spline models for observational data , 1990 .

[4]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[5]  Bernard W. Silverman,et al.  Speed of Estimation in Positron Emission Tomography and Related Inverse Problems , 1990 .

[6]  D. Donoho,et al.  Minimax Risk Over Hyperrectangles, and Implications , 1990 .

[7]  Ja-Yong Koo,et al.  Optimal Rates of Convergence for Nonparametric Statistical Inverse Problems , 1993 .

[8]  A. Tsybakov,et al.  Minimax theory of image reconstruction , 1993 .

[9]  D. Donoho Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .

[10]  Diophantine approximation in ⁿ , 1995 .

[11]  B. Levit,et al.  On minimax filtering over ellipsoids , 1995 .

[12]  S. Lang,et al.  Introduction to Diophantine Approximations , 1995 .

[13]  Bernard A. Mair,et al.  Statistical Inverse Estimation in Hilbert Scales , 1996, SIAM J. Appl. Math..

[14]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[15]  Wolfgang Osten,et al.  Introduction to Inverse Problems in Imaging , 1999 .

[16]  R. Khas'minskii,et al.  A STATISTICAL APPROACH TO SOME INVERSE PROBLEMS FOR PARTIAL DIFFERENTIAL EQUATIONS , 1999 .

[17]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[18]  Finbarr O'Sullivan,et al.  An Analysis of the Role of Positivity and Mixture Model Constraints in Poisson Deconvolution Problems , 2001 .

[19]  Inverting noisy integral equations using wavelet expansions: a class of irregular convolutions , 2001 .

[20]  G. Golubev,et al.  A statistical approach to the Cauchy problem for the Laplace equation , 2001 .

[21]  Luis Tenorio,et al.  Statistical Regularization of Inverse Problems , 2001, SIAM Rev..

[22]  P. Stark Inverse problems as statistics , 2002 .

[23]  A. Tsybakov,et al.  Sharp adaptation for inverse problems with random noise , 2002 .

[24]  A. Tsybakov,et al.  Oracle inequalities for inverse problems , 2002 .

[25]  P. Mathé,et al.  INVERSE PROBLEMS IN HILBERT SCALES , 2002 .

[26]  P. Groeneboom,et al.  Density estimation in the uniform deconvolution model , 2003 .

[27]  Gerard Kerkyacharian,et al.  Wavelet deconvolution in a periodic setting , 2004 .