The Structure of Jupiter, Saturn, and Exoplanets: Key Questions for High-Pressure Experiments

We give an overview of our current understanding of the structure of gas giant planets, from Jupiter and Saturn to extrasolar giant planets. We focus on addressing what high-pressure laboratory experiments on hydrogen and helium can help to elucidate about the structure of these planets.

[1]  W. Demarcus The constitution of Jupiter and Saturn , 1958 .

[2]  Michael H. Wong,et al.  Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets , 2003 .

[3]  W. Hubbard Thermal structure of Jupiter , 1968 .

[4]  W. Hubbard,et al.  The significance of atmospheric measurements for interior models of the major planets , 1973 .

[5]  October I Physical Review Letters , 2022 .

[6]  Tristan Guillot,et al.  Evolution of "51 Pegasus b-like" planets , 2002 .

[7]  Tristan Guillot THE INTERIORS OF GIANT PLANETS: Models and Outstanding Questions , 2001 .

[8]  W. Hubbard,et al.  Statistical mechanics of light elements at high pressure. VII: A perturbative free energy for arbitrary mixtures of H and He , 1985 .

[9]  Weber,et al.  Measurements of the equation of state of deuterium at the fluid insulator-metal transition , 1998, Science.

[10]  Gilbert W. Collins,et al.  Temperature measurements of shock compressed liquid deuterium up to 230 GPa. , 2001, Physical review letters.

[11]  D. Gautier,et al.  Saturn Helium Abundance: A Reanalysis of Voyager Measurements , 2000 .

[12]  T. Guillot,et al.  Giant Planets at Small Orbital Distances , 1995, astro-ph/9511109.

[13]  Ross,et al.  Temperature measurements and dissociation of shock-compressed liquid deuterium and hydrogen. , 1995, Physical review. B, Condensed matter.

[14]  W. J. Nellis,et al.  Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar) , 1996 .

[15]  D. Stevenson Thermodynamics and phase separation of dense fully ionized hydrogen-helium fluid mixtures , 1975 .

[16]  M. Holman,et al.  Accepted for publication in the Astrophysical Journal Letters Obliquity Tides on Hot Jupiters , 2005 .

[17]  Hohl,et al.  Miscibility of hydrogen and helium under astrophysical conditions. , 1995, Physical review letters.

[18]  Saumon,et al.  Fluid hydrogen at high density: Pressure dissociation. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[19]  F. Allard,et al.  The Evolution of Irradiated Planets: Application to Transits , 2004, astro-ph/0401487.

[20]  G. V. Simakov,et al.  Shock compression of liquid deuterium up to 109 GPa , 2005 .

[21]  E. Salpeter,et al.  The dynamics and helium distribution in hydrogen-helium fluid planets , 1977 .

[22]  W. Nellis Deuterium Hugoniot up to 120 Gpa (1.2 Mbar) , 2005 .

[23]  J. A. Crowther Reports on Progress in Physics , 1941, Nature.

[24]  D. Saumon,et al.  Atmosphere, Interior, and Evolution of the Metal-rich Transiting Planet HD 149026b , 2006 .

[25]  M. Knudson,et al.  Equation of state measurements in liquid deuterium to 70 GPa. , 2001, Physical review letters.

[26]  D. SaumonT. Guillot Shock Compression of Deuterium and the Interiors of Jupiter and Saturn , 2004 .

[27]  W. Nellis,et al.  Dynamic compression of materials: metallization of fluid hydrogen at high pressures , 2006 .

[28]  J. Fortney,et al.  Effects of helium phase separation on the evolution of extrasolar giant planets , 2003, astro-ph/0402620.

[29]  F. Low Observations of Venus, Jupiter, and Saturn at λ20 μ. , 1966 .

[30]  W. Nellis,et al.  Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar) , 1999 .

[31]  James E. Bailey,et al.  Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques , 2004 .

[32]  D. Saumon,et al.  The Molecular-Metallic Transition of Hydrogen and the Structure of Jupiter and Saturn , 1992 .

[33]  William B. Hubbard,et al.  Theory of Giant Planets , 2002 .

[34]  Phase separation in giant planets: inhomogeneous evolution of Saturn , 2003, astro-ph/0305031.

[35]  Ignasi Ribas,et al.  A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars , 2006, astro-ph/0605751.

[36]  M. Marley,et al.  Comparative models of Uranus and Neptune , 1995 .

[37]  D. Hunten,et al.  Helium in Jupiter's atmosphere: Results from the Galileo probe Helium Interferometer Experiment , 1998 .

[38]  A. Cameron,et al.  Models of the Giant Planets , 1974 .

[39]  William J. Nellis,et al.  Shock Compression of Liquid Helium to 56 GPa (560 kbar) , 1984 .

[40]  Debra A. Fischer,et al.  A Comparison of Observationally Determined Radii with Theoretical Radius Predictions for Short-Period Transiting Extrasolar Planets , 2005 .

[41]  T. Guillot,et al.  Astrophysical Implications of the Recent Shocked Deuterium Experiments , 2005 .

[42]  T. Guillot A COMPARISON OF THE INTERIORS OF JUPITER AND SATURN , 1999, astro-ph/9907402.

[43]  Peter Bodenheimer,et al.  On the Tidal Inflation of Short-Period Extrasolar Planets , 2001 .

[44]  The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core , 2005, astro-ph/0507009.