Is there a geometric module for spatial orientation? squaring theory and evidence

There is evidence, beginning with Cheng (1986), that mobile animals may use the geometry of surrounding areas to reorient following disorientation. Gallistel (1990) proposed that geometry is used to compute the major or minor axes of space and suggested that such information might form an encapsulated cognitive module. Research reviewed here, conducted on a wide variety of species since the initial discovery of the use of geometry and the formulation of the modularity claim, has supported some aspects of the approach, while casting doubt on others. Three possible processing models are presented that vary in the way in which (and the extent to which) they instantiate the modularity claim. The extant data do not permit us to discriminate among them. We propose a modified concept of modularity for which an empirical program of research is more tractable.

[1]  R. G. Crowder Principles of learning and memory , 1977 .

[2]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[3]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[4]  J. Fodor The Modularity of mind. An essay on faculty psychology , 1986 .

[5]  J. L. Gould,et al.  Honey bee navigation. , 1983 .

[6]  N. J. Mackintosh,et al.  Blocking and Overshadowing between Intra-Maze and Extra-Maze Cues: A Test of the Independence of Locale and Guidance Learning , 1985 .

[7]  K. Cheng A purely geometric module in the rat's spatial representation , 1986, Cognition.

[8]  A. Sirigu,et al.  Pure Topographical Disorientation: A Definition and Anatomical Basis , 1987, Cortex.

[9]  C. Gallistel,et al.  Heading in the rat: Determination by environmental shape , 1988 .

[10]  M. Spetch,et al.  Pigeons', Columba livia, use of global and local cues for spatial memory , 1988, Animal Behaviour.

[11]  K. Cheng The vector sum model of pigeon landmark use. , 1989 .

[12]  M Zanforlin,et al.  Geometric modules in animals' spatial representations: a test with chicks (Gallus gallus domesticus). , 1990, Journal of comparative psychology.

[13]  S. Wehner,et al.  Insect navigation: use of maps or Ariadne's thread ? , 1990 .

[14]  W H Meck,et al.  Organizational effects of early gonadal secretions on sexual differentiation in spatial memory. , 1990, Behavioral neuroscience.

[15]  R. C. Tees,et al.  The effect of early experience on water maze spatial learning and memory in rats. , 1990, Developmental psychobiology.

[16]  永福 智志 The Organization of Learning , 2005, Journal of Cognitive Neuroscience.

[17]  J. Huttenlocher,et al.  The Coding of Spatial Location in Young Children , 1994, Cognitive Psychology.

[18]  R. Wehner,et al.  The polarization-vision project: championing organismic biology , 1994 .

[19]  Elizabeth S. Spelke,et al.  A geometric process for spatial reorientation in young children , 1994, Nature.

[20]  K. Cheng,et al.  The determination of direction in landmark-based spatial search in pigeons: A further test of the vector sum model , 1994 .

[21]  M L Spetch,et al.  Overshadowing in landmark learning: touch-screen studies with pigeons and humans. , 1995, Journal of experimental psychology. Animal behavior processes.

[22]  M L Spetch,et al.  Learning the configuration of a landmark array: I. Touch-screen studies with pigeons and humans. , 1996, Journal of comparative psychology.

[23]  R. R. Miller,et al.  Biological significance in forward and backward blocking: resolution of a discrepancy between animal conditioning and human causal judgment. , 1996, Journal of experimental psychology. General.

[24]  M. Spetch,et al.  Averaging temporal duration and spatial position. , 1996, Journal of experimental psychology. Animal behavior processes.

[25]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[26]  M. D’Esposito,et al.  The parahippocampus subserves topographical learning in man , 1996, NeuroImage.

[27]  E. Spelke,et al.  Modularity and development: the case of spatial reorientation , 1996, Cognition.

[28]  Ralph R. Miller,et al.  Biological Significance as a Determinant of Cue Competition , 1996 .

[29]  R. Wehner,et al.  Visual navigation in insects: coupling of egocentric and geocentric information , 1996, The Journal of experimental biology.

[30]  V. D. Chamizo,et al.  Blocking in the spatial domain. , 1997, Journal of experimental psychology. Animal behavior processes.

[31]  G. Vallortigara,et al.  Young chickens learn to localize the centre of a spatial environment , 1997, Journal of Comparative Physiology A.

[32]  Richard S. J. Frackowiak,et al.  Recalling Routes around London: Activation of the Right Hippocampus in Taxi Drivers , 1997, The Journal of Neuroscience.

[33]  Alan C. Kamil,et al.  The seed-storing corvid Clark's nutcracker learns geometric relationships among landmarks , 1997, Nature.

[34]  S. Huettel,et al.  Males and females use different distal cues in a virtual environment navigation task. , 1998, Brain research. Cognitive brain research.

[35]  Marcia L. Spetch,et al.  Mechanisms of landmark use in mammals and birds. , 1998 .

[36]  L. Nadel,et al.  Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahippocampal cortex , 1998, Neuropsychologia.

[37]  S. Moffat,et al.  Navigation in a “Virtual” Maze: Sex Differences and Correlation With Psychometric Measures of Spatial Ability in Humans , 1998 .

[38]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[39]  K. Cheng Distances and directions are computed separately by honeybees in landmark-based search , 1998 .

[40]  Richard S. J. Frackowiak,et al.  Knowing where and getting there: a human navigation network. , 1998, Science.

[41]  Simon Benhamou,et al.  LANDMARK USE BY NAVIGATING RATS (RATTUS NORVEGICUS) : CONTRASTING GEOMETRIC AND FEATURAL INFORMATION , 1998 .

[42]  Debbie M. Kelly,et al.  Pigeons' (Columba livia) encoding of geometric and featural properties of a spatial environment. , 1998 .

[43]  S. Healy Spatial representation in animals. , 1998 .

[44]  N Burgess,et al.  Place cells, navigational accuracy, and the human hippocampus. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[45]  D. Sengelaub,et al.  Prenatal Gonadal Steroids Affect Adult Spatial Behavior, CA1 and CA3 Pyramidal Cell Morphology in Rats , 1998, Hormones and Behavior.

[46]  E. Maguire,et al.  Knowing Where Things Are: Parahippocampal Involvement in Encoding Object Locations in Virtual Large-Scale Space , 1998, Journal of Cognitive Neuroscience.

[47]  A. Etienne,et al.  Role of dead reckoning in navigation , 1998 .

[48]  A Gagliardo,et al.  Homing in Pigeons: The Role of the Hippocampal Formation in the Representation of Landmarks Used for Navigation , 1999, The Journal of Neuroscience.

[49]  Elizabeth S. Spelke,et al.  Sources of Flexibility in Human Cognition: Dual-Task Studies of Space and Language , 1999, Cognitive Psychology.

[50]  M. D’Esposito,et al.  Topographical disorientation: a synthesis and taxonomy. , 1999, Brain : a journal of neurology.

[51]  R Biegler,et al.  Blocking in the spatial domain with arrays of discrete landmarks. , 1999, Journal of experimental psychology. Animal behavior processes.

[52]  Alan C. Evans,et al.  A cognitive activation study of memory for spatialrelationshipsfn2 fn2 Study conducted at the McConnellBrain Imaging Centre, Montreal Neurological Institute,McGill University. , 1999, Neuropsychologia.

[53]  E S Spelke,et al.  Mechanisms of reorientation and object localization by children: a comparison with rats. , 1999, Behavioral neuroscience.

[54]  Russell A. Epstein,et al.  The Parahippocampal Place Area Recognition, Navigation, or Encoding? , 1999, Neuron.

[55]  Neil Burgess,et al.  Human spatial navigation: cognitive maps, sexual dimorphism, and neural substrates , 1999, Current Opinion in Neurobiology.

[56]  Wai-Kiang Yeap,et al.  Computing a Representation of the Local Environment , 1999, Artif. Intell..

[57]  J. Pearce,et al.  Blocking in the Morris swimming pool. , 1999, Journal of experimental psychology. Animal behavior processes.

[58]  A. Wunderlich,et al.  Brain activation during human navigation: gender-different neural networks as substrate of performance , 2000, Nature Neuroscience.

[59]  M. Gazzaniga,et al.  The new cognitive neurosciences , 2000 .

[60]  C. Gallistel The Replacement of General-Purpose Learning Models with Adaptively Specialized Learning Modules , 2000 .

[61]  A. Kamil,et al.  Geometric rule learning by Clark's nutcrackers (Nucifraga columbiana). , 2000, Journal of experimental psychology. Animal behavior processes.

[62]  Jack L. Vevea,et al.  Why do categories affect stimulus judgment? , 2000, Journal of experimental psychology. General.

[63]  S. Bricogne,et al.  Neural Correlates of Topographic Mental Exploration: The Impact of Route versus Survey Perspective Learning , 2000, NeuroImage.

[64]  G. Vallortigara,et al.  Searching for the center: spatial cognition in the domestic chick (Gallus gallus). , 2000, Journal of experimental psychology. Animal behavior processes.

[65]  Ken Cheng,et al.  How honeybees find a place: Lessons from a simple mind , 2000 .

[66]  Masoud Mohammadian New frontiers in computational intelligence and its applications , 2000 .

[67]  J. Huttenlocher,et al.  Making Space: The Development of Spatial Representation and Reasoning , 2000 .

[68]  E. Spelke,et al.  Updating egocentric representations in human navigation , 2000, Cognition.

[69]  Hanna Damasio,et al.  The neuroanatomical correlates of route learning impairment , 2000, Neuropsychologia.

[70]  Paolo Di Bella,et al.  Topographical Disorientation Consequent to Amnesia of Spatial Location in A Patient with Right Parahippocampal Damage , 2000, Cortex.

[71]  C. Gallistel,et al.  Time, rate, and conditioning. , 2000, Psychological review.

[72]  R. Biegler Possible uses of path integration in animal navigation , 2000 .

[73]  Matthew Collett,et al.  Path integration in insects , 2000, Current Opinion in Neurobiology.

[74]  L. Hermer-Vazquez,et al.  Language, space, and the development of cognitive flexibility in humans: the case of two spatial memory tasks , 2001, Cognition.

[75]  Sharon R. Doerkson,et al.  Use of Landmark Configuration in Pigeons and Humans : II . Generality Across Search Tasks , 2001 .

[76]  Russell A. Epstein,et al.  Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex , 2001, Cognitive neuropsychology.

[77]  J. Huttenlocher,et al.  Toddlers' use of metric information and landmarks to reorient. , 2001, Journal of experimental child psychology.

[78]  A. Treisman,et al.  Attention, Space, and Action: Studies in Cognitive Neuroscience , 2001 .

[79]  J. Gavin Bremner,et al.  Use of cue configuration geometry for spatial orientation in human infants (Homo sapiens). , 2001 .

[80]  N Burgess,et al.  Bilateral hippocampal pathology impairs topographical and episodic memory but not visual pattern matching , 2001, Hippocampus.

[81]  G. Vallortigara,et al.  Encoding of geometric and landmark information in the left and right hemispheres of the Avian Brain. , 2001, Behavioral neuroscience.

[82]  C J Whitaker,et al.  Use of cue configuration geometry for spatial orientation in human infants (Homo sapiens). , 2001, Journal of comparative psychology.

[83]  M L Spetch,et al.  Pigeons encode relative geometry. , 2001, Journal of experimental psychology. Animal behavior processes.

[84]  C Thinus-Blanc,et al.  Rhesus monkeys use geometric and nongeometric information during a reorientation task. , 2001, Journal of experimental psychology. General.

[85]  E. D. Haan,et al.  Varieties of human spatial memory: a meta-analysis on the effects of hippocampal lesions , 2001, Brain Research Reviews.

[86]  N Burgess,et al.  Unilateral temporal lobectomy patients show lateralized topographical and episodic memory deficits in a virtual town. , 2001, Brain : a journal of neurology.

[87]  S. Gouteuxa,et al.  Reorientation in a small-scale environment by 3-, 4-, and 5-year-old children , 2001 .

[88]  J Ward-Robinson,et al.  Influence of a beacon on spatial learning based on the shape of the test environment. , 2001, Journal of experimental psychology. Animal behavior processes.

[89]  E. Spelke,et al.  Children's use of geometry and landmarks to reorient in an open space , 2001, Cognition.

[90]  A C Kamil,et al.  Way-finding and landmarks: the multiple-bearings hypothesis. , 2001, The Journal of experimental biology.

[91]  Lynn Nadel,et al.  Children's Use of Landmarks: Implications for Modularity Theory , 2002, Psychological science.

[92]  Valeria Anna Sovrano,et al.  Modularity and spatial reorientation in a simple mind: encoding of geometric and nongeometric properties of a spatial environment by fish , 2002, Cognition.

[93]  Thomas S. Collett,et al.  Memory use in insect visual navigation , 2002, Nature Reviews Neuroscience.

[94]  N. Newcombe The Nativist-Empiricist Controversy in the Context of Recent Research on Spatial and Quantitative Development , 2002, Psychological science.

[95]  E. Spelke,et al.  Human Spatial Representation: Insights from Animals , 2002 .

[96]  E. Maguire,et al.  Neurodevelopmental Aspects of Spatial Navigation: A Virtual Reality fMRI Study , 2002, NeuroImage.

[97]  Rüdiger Wehner,et al.  Honey bees store landmarks in an egocentric frame of reference , 2002, Journal of Comparative Physiology A.

[98]  S. Shettleworth,et al.  A comparative study of geometric rule learning by nutcrackers (Nucifraga columbiana), pigeons (Columba livia), and jackdaws (Corvus monedula). , 2002, Journal of comparative psychology.

[99]  J. Gabrieli,et al.  Neural Correlates of Encoding Space from Route and Survey Perspectives , 2002, The Journal of Neuroscience.

[100]  C. Gallistel,et al.  The Symbolic Foundations of Conditioned Behavior , 2002 .

[101]  Thomas J. Wills,et al.  Long-term plasticity in hippocampal place-cell representation of environmental geometry , 2002, Nature.

[102]  Pablo Rychter Modularidad y teoría computacional de la mente en la obra de Jerry Fodor: Nota crítica en torno a The Mind Doesn't Work that Way , 2002 .

[103]  John A. King,et al.  Human hippocampus and viewpoint dependence in spatial memory , 2002, Hippocampus.

[104]  Neil Burgess,et al.  Neural representations in human spatial memory , 2003, Trends in Cognitive Sciences.

[105]  Valeria Anna Sovrano,et al.  Modularity as a fish (Xenotoca eiseni) views it: conjoining geometric and nongeometric information for spatial reorientation. , 2003, Journal of experimental psychology. Animal behavior processes.

[106]  Arne D. Ekstrom,et al.  Cellular networks underlying human spatial navigation , 2003, Nature.

[107]  S. Gepshtein,et al.  Viewing Geometry Determines How Vision and Haptics Combine in Size Perception , 2003, Current Biology.

[108]  J. Pearce,et al.  Absence of Overshadowing and Blocking between Landmarks and the Geometric Cues Provided by the Shape of a Test Arena , 2003, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[109]  Paul Helm,et al.  The Web of Belief , 2003 .

[110]  Lucia F Jacobs,et al.  Unpacking the cognitive map: the parallel map theory of hippocampal function. , 2003, Psychological review.

[111]  Janellen Huttenlocher,et al.  How toddlers represent enclosed spaces , 2003, Cogn. Sci..

[112]  R. F. Wang,et al.  Comparative approaches to human navigation , 2003 .

[113]  E. Save,et al.  Drawing parallels between the behavioural and neural properties of navigation , 2003 .

[114]  Kathryn J. Jeffery,et al.  The representation of spatial context. , 2003 .

[115]  Giorgio Vallortigara,et al.  Separate processing mechanisms for encoding of geometric and landmark information in the avian hippocampus , 2003, The European journal of neuroscience.

[116]  Mandyam V. Srinivasan,et al.  Path integration in insects , 2003 .

[117]  C. Gallistel The Principle of Adaptive Specialization as It Applies to Learning and Memory , 2003 .

[118]  K. Jeffery,et al.  Dissociation of the geometric and contextual influences on place cells , 2003, Hippocampus.

[119]  Paul E. Downing,et al.  Viewpoint-Specific Scene Representations in Human Parahippocampal Cortex , 2003, Neuron.

[120]  C. Gallistel,et al.  Conditioning from an information processing perspective , 2003, Behavioural Processes.

[121]  Kathryn J. Jeffery,et al.  The neurobiology of spatial behaviour , 2003 .

[122]  Lucia F. Jacobs,et al.  The Evolution of the Cognitive Map , 2003, Brain, Behavior and Evolution.

[123]  E. Maguire,et al.  The Well-Worn Route and the Path Less Traveled Distinct Neural Bases of Route Following and Wayfinding in Humans , 2003, Neuron.

[124]  M. Spetch,et al.  Searching by rules: pigeons' (Columba livia) landmark-based search according to constant bearing or constant distance. , 2003, Journal of comparative psychology.

[125]  W. Wiltschko,et al.  Sun compass orientation in seed-caching scrub jays (Aphelocoma coerulescens) , 1989, Journal of Comparative Physiology A.

[126]  M. Lindauer,et al.  Himmel und Erde in Konkurrenz bei der Orientierung der Bienen , 2004, Naturwissenschaften.

[127]  M. Spetch,et al.  Searching in the center: pigeons (Columba livid) encode relative distance from walls of an enclosure. , 2004, Journal of comparative psychology.

[128]  Valeria Anna Sovrano,et al.  Separate Geometric and Non-Geometric Modules for Spatial Reorientation: Evidence from a Lopsided Animal Brain , 2004, Journal of Cognitive Neuroscience.

[129]  Sara J Shettleworth,et al.  The geometric module in the rat: independence of shape and feature learning in a food finding task , 2004, Learning & behavior.

[130]  Ken Cheng,et al.  Some psychophysics of the pigeon's use of landmarks , 1988, Journal of Comparative Physiology A.

[131]  Luca Tommasi,et al.  Representation of two geometric features of the environment in the domestic chick (Gallus gallus) , 2004, Animal Cognition.

[132]  N. Burgess,et al.  Geometric determinants of human spatial memory , 2004, Cognition.

[133]  Marcia L Spetch,et al.  Reorientation in a two-dimensional environment: I. Do adults encode the featural and geometric properties of a two-dimensional schematic of a room? , 2004, Journal of comparative psychology.

[134]  T. S. Collett,et al.  Landmark learning in bees , 1983, Journal of comparative physiology.

[135]  John J. Rieser,et al.  Action as an organizer of learning and development , 2005 .