Solar cell efficiency tables (version 27)

By providing guide-lines for the inclusion of results into these tables, this not only providesan authoritative summary of thecurrent state of the art but also encourages researchers to seek independent confirmation of results and to reportresults on a standardised basis. In the present article, new results since July, 2005 are briefly reviewed.Themostimportant criterionforinclusionof results intothetables isthat theymusthavebeenmeasuredbyarecognised test centre listed in an earlier issue.

[1]  C. J. Keavney,et al.  Emitter structures in MOCVD InP solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[2]  J. van Deelen,et al.  HIGH EFFICIENCY THIN FILM GaAs SOLAR CELLS WITH IMPROVED RADIATION HARDNESS , 2005 .

[3]  Kenji Yamamoto,et al.  High efficiency thin film silicon hybrid solar cell module on 1 m/sup 2/-class large area substrate , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[4]  Carl R. Osterwald,et al.  Advanced high-efficiency concentrator tandem solar cells , 1991, The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991.

[5]  G. F. Virshup,et al.  A 31%-efficient GaAs/silicon mechanically stacked, multijunction concentrator solar cell , 1988, Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference.

[6]  Paul A. Basore,et al.  Pilot production of thin-film crystalline silicon on glass modules , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[7]  M. Taguchi,et al.  An approach for the higher efficiency in the HIT cells , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[8]  D. Flood,et al.  A high-performance photovoltaic concentrator array: The mini-dome Fresnel lens concentrator with 30% efficient GaAs/GaSb tandem cells , 1991, The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991.

[9]  Michael Grätzel,et al.  Perspectives for dye‐sensitized nanocrystalline solar cells , 2000 .

[10]  E. Mopas,et al.  Large area Apollo(R) module performance and reliability , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[11]  Rommel Noufi,et al.  Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin‐film solar cells , 2003 .

[12]  Kenji Yamamoto,et al.  Thin-film poly-Si solar cells on glass substrate fabricated at low temperature , 1999 .

[13]  Kim W. Mitchell,et al.  High efficiency concentrator cells , 1981 .

[14]  T. Moriarty,et al.  Potential of amorphous and microcrystalline silicon solar cells , 2004 .

[15]  Carl R. Osterwald,et al.  InP concentrator solar cells , 1991, The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991.

[16]  D. L. King,et al.  World's first 15%-efficient multicrystalline silicon modules , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[17]  Rommel Noufi,et al.  Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells , 1999 .

[18]  Keith Emery,et al.  High-efficiency heteroepitaxial InP solar cells , 1991, The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991.

[19]  Ralf B. Bergmann,et al.  Advances in monocrystalline Si thin film solar cells by layer transfer , 2002 .

[20]  Michelle McCann,et al.  Buried contact solar cells on multicrystalline silicon with optimised bulk and surface passivation , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[21]  S. Guha,et al.  Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[22]  M. Green,et al.  20 000 PERL silicon cells for the ‘1996 World Solar Challenge’ solar car race , 1997 .

[23]  Martin A. Green,et al.  Solar cell efficiency tables (version 17) , 2001 .

[24]  V. Haven,et al.  High-efficiency concentrator cells from GaAs on Si , 1991, The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991.

[25]  D. Pier,et al.  SINGLE AND TANDEM JUNCTION CuInSe2 CELL AND MODULE TECHNOLOGY , 1988 .

[26]  Daniel J. Friedman,et al.  Accelerated publication 30.2% efficient GaInP/GaAs monolithic two‐terminal tandem concentrator cell , 1995 .

[27]  M. Green,et al.  24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates , 1999 .

[28]  Martin A. Green,et al.  Large area, concentrator buried contact solar cells , 1995 .

[29]  Gerald Siefer,et al.  DEVELOPMENT OF HIGH-EFFICIENCY MECHANICALLY STACKED GaInP/GaInAs-GaSb TRIPLE- JUNCTION CONCENTRATOR SOLAR CELLS , 2001 .

[30]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 26) , 2005 .

[31]  D. L. King,et al.  Solar cell efficiency tables (version 22) , 1996, Renewable Energy.

[32]  H. Field,et al.  18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[33]  Subhendu Guha,et al.  Progress in triple-junction amorphous silicon-based alloy solar cells and modules using hydrogen dilution , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[34]  Geoffrey S. Kinsey,et al.  PATHWAYS TO 40%-EFFICIENT CONCENTRATOR PHOTOVOLTAICS , 2005 .

[35]  Kim W. Mitchell,et al.  Single and tandem junction CuInSe/sub 2/ cell and module technology , 1988, Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference.

[36]  K. Emery,et al.  Proposed reference irradiance spectra for solar energy systems testing , 2002 .

[37]  V. S. Sundaram,et al.  Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications , 1990, IEEE Conference on Photovoltaic Specialists.

[38]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .