Impaired cortico-striatal excitatory transmission triggers epilepsy

[1]  C. Ahern,et al.  SCN2A channelopathies in the autism spectrum of neuropsychiatric disorders: a role for pluripotent stem cells? , 2020, Molecular Autism.

[2]  H. Zoghbi,et al.  Stxbp1/Munc18-1 haploinsufficiency impairs inhibition and mediates key neurological features of STXBP1 encephalopathy , 2020, eLife.

[3]  L. Pozzo-Miller,et al.  Dysfunction of the corticostriatal pathway in autism spectrum disorders , 2019, Journal of neuroscience research.

[4]  G. Anastasi,et al.  The Cortico-Basal Ganglia-Cerebellar Network: Past, Present and Future Perspectives , 2019, Front. Syst. Neurosci..

[5]  M. Mantegazza,et al.  NaV1.2 haploinsufficiency in Scn2a knock-out mice causes an autistic-like phenotype attenuated with age , 2019, Scientific Reports.

[6]  Y. Yanagawa,et al.  Nav1.2 haplodeficiency in excitatory neurons causes absence-like seizures in mice , 2018, Communications Biology.

[7]  Kwang Lee,et al.  Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative Learning , 2018, Neuron.

[8]  Stephan J Sanders,et al.  Progress in Understanding and Treating SCN2A-Mediated Disorders , 2018, Trends in Neurosciences.

[9]  Steven J. Middleton,et al.  Altered hippocampal replay is associated with memory impairment in mice heterozygous for the Scn2a gene , 2018, Nature Neuroscience.

[10]  Vincenzo Crunelli,et al.  Cortical drive and thalamic feed-forward inhibition control thalamic output synchrony during absence seizures , 2018, Nature Neuroscience.

[11]  F. Deák,et al.  Munc18-1 haploinsufficiency impairs learning and memory by reduced synaptic vesicular release in a model of Ohtahara syndrome , 2018, Molecular and Cellular Neuroscience.

[12]  P. Sullivan,et al.  Protein instability, haploinsufficiency, and cortical hyper-excitability underlie STXBP1 encephalopathy , 2018, Brain : a journal of neurology.

[13]  S. Charpier,et al.  Pathophysiology of absence epilepsy: Insights from genetic models , 2017, Neuroscience Letters.

[14]  K. Yamakawa,et al.  Potentiation of excitatory synaptic transmission ameliorates aggression in mice with Stxbp1 haploinsufficiency , 2017, Human molecular genetics.

[15]  L. Lagae,et al.  Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders , 2017, Brain : a journal of neurology.

[16]  Kwang Lee,et al.  Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative Learning , 2017, Neuron.

[17]  John R. Huguenard,et al.  Regulation of Thalamic and Cortical Network Synchrony by Scn8a , 2017, Neuron.

[18]  B. Maria Epileptic Encephalopathy , 2017, Journal of child neurology.

[19]  Thomas J. Davidson,et al.  Bidirectional Control of Generalized Epilepsy Networks via Rapid Real-Time Switching of Firing Mode , 2017, Neuron.

[20]  Andreas Klaus,et al.  A Low-Correlation Resting State of the Striatum during Cortical Avalanches and Its Role in Movement Suppression , 2016, PLoS biology.

[21]  Dheeraj S. Roy,et al.  Ventral CA1 neurons store social memory , 2016, Science.

[22]  D. Hansel,et al.  The Role of Striatal Feedforward Inhibition in the Maintenance of Absence Seizures , 2016, The Journal of Neuroscience.

[23]  A. Nambu,et al.  Survival of corticostriatal neurons by Rho/Rho-kinase signaling pathway , 2016, Neuroscience Letters.

[24]  C. Pittenger,et al.  Ablation of fast-spiking interneurons in the dorsal striatum, recapitulating abnormalities seen post-mortem in Tourette syndrome, produces anxiety and elevated grooming , 2016, Neuroscience.

[25]  P. Striano,et al.  STXBP1 encephalopathy , 2016, Neurology.

[26]  M. Mark,et al.  Isolated P/Q Calcium Channel Deletion in Layer VI Corticothalamic Neurons Generates Absence Epilepsy , 2016, The Journal of Neuroscience.

[27]  K. Yamakawa Mutations of Voltage-Gated Sodium Channel Genes SCN1A and SCN2A in Epilepsy, Intellectual Disability, and Autism , 2016 .

[28]  T. Südhof,et al.  Analysis of conditional heterozygous STXBP1 mutations in human neurons. , 2015, The Journal of clinical investigation.

[29]  S. Nelson,et al.  Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders , 2015, Neuron.

[30]  H. Hirase,et al.  Adaptive changes of extracellular amino acid concentrations in mouse dorsal striatum by 4-AP-induced cortical seizures , 2015, Neuroscience.

[31]  Alexander Hoischen,et al.  Prioritization of neurodevelopmental disease genes by discovery of new mutations , 2014, Nature Neuroscience.

[32]  Conor D. Cox,et al.  Pharmacological enhancement of memory or cognition in normal subjects , 2014, Front. Syst. Neurosci..

[33]  Kazuto Kobayashi,et al.  Improved transduction efficiency of a lentiviral vector for neuron-specific retrograde gene transfer by optimizing the junction of fusion envelope glycoprotein , 2014, Journal of Neuroscience Methods.

[34]  A. Graybiel,et al.  Differential Entrainment and Learning-Related Dynamics of Spike and Local Field Potential Activity in the Sensorimotor and Associative Striatum , 2014, The Journal of Neuroscience.

[35]  J. Noebels,et al.  Monogenic models of absence epilepsy: windows into the complex balance between inhibition and excitation in thalamocortical microcircuits. , 2014, Progress in brain research.

[36]  K. Miller,et al.  A Theory of the Transition to Critical Period Plasticity: Inhibition Selectively Suppresses Spontaneous Activity , 2013, Neuron.

[37]  D. Lev,et al.  Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome , 2013, Neurology.

[38]  N. Tamamaki,et al.  Nav1.1 haploinsufficiency in excitatory neurons ameliorates seizure-associated sudden death in a mouse model of Dravet syndrome , 2013, Human molecular genetics.

[39]  D. Horn,et al.  Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study , 2012, The Lancet.

[40]  T. Hensch,et al.  Serotonergic Integration of Circadian Clock and Ultradian Sleep–Wake Cycles , 2012, The Journal of Neuroscience.

[41]  H. Miyamoto,et al.  Novel biochemical manipulation of brain serotonin reveals a role of serotonin in the circadian rhythm of sleep–wake cycles , 2012, The European journal of neuroscience.

[42]  Daisuke Kase,et al.  Roles of the subthalamic nucleus and subthalamic HCN channels in absence seizures. , 2012, Journal of neurophysiology.

[43]  Anatol C. Kreitzer,et al.  Selective Inhibition of Striatal Fast-Spiking Interneurons Causes Dyskinesias , 2011, The Journal of Neuroscience.

[44]  G. Feng,et al.  Shank3 mutant mice display autistic-like behaviours and striatal dysfunction , 2011, Nature.

[45]  H. Ikeda,et al.  STXBP1 mutations cause not only Ohtahara syndrome but also West syndrome—Result of Japanese cohort study , 2010, Epilepsia.

[46]  Vincenzo Crunelli,et al.  Enhanced tonic GABAA inhibition in typical absence epilepsy , 2009, Nature Medicine.

[47]  K. Yamakawa,et al.  De novo mutations of voltage-gated sodium channel αII gene SCN2A in intractable epilepsies , 2009, Neurology.

[48]  T. Kaneko,et al.  Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice , 2009, Neuroscience Research.

[49]  Naomichi Matsumoto,et al.  De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy , 2008, Nature Genetics.

[50]  A. Reiner,et al.  Differential localization of the GluR1 and GluR2 subunits of the AMPA-type glutamate receptor among striatal neuron types in rats , 2007, Journal of Chemical Neuroanatomy.

[51]  S. Charpier,et al.  Deep Layer Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model of Absence Seizures , 2007, The Journal of Neuroscience.

[52]  Jean-Michel Deniau,et al.  Activity of Ventral Medial Thalamic Neurons during Absence Seizures and Modulation of Cortical Paroxysms by the Nigrothalamic Pathway , 2007, The Journal of Neuroscience.

[53]  Arjen Brussaard,et al.  Munc18-1 expression levels control synapse recovery by regulating readily releasable pool size , 2006, Proceedings of the National Academy of Sciences.

[54]  Shunsuke Ohtahara,et al.  Ohtahara syndrome: With special reference to its developmental aspects for differentiating from early myoclonic encephalopathy , 2006, Epilepsy Research.

[55]  Stéphane Charpier,et al.  Feedforward Inhibition of Projection Neurons by Fast-Spiking GABA Interneurons in the Rat Striatum In Vivo , 2005, The Journal of Neuroscience.

[56]  V. Crunelli,et al.  Cortical-area specific block of genetically determined absence seizures by ethosuximide , 2004, Neuroscience.

[57]  H. Eichenbaum,et al.  Oscillatory Entrainment of Striatal Neurons in Freely Moving Rats , 2004, Neuron.

[58]  I. Rapin,et al.  The genetics of autism. , 2004, Pediatrics.

[59]  K. Yamakawa,et al.  A Nonsense Mutation of the Sodium Channel Gene SCN2A in a Patient with Intractable Epilepsy and Mental Decline , 2004, The Journal of Neuroscience.

[60]  F. H. Lopes da Silva,et al.  Cortical Focus Drives Widespread Corticothalamic Networks during Spontaneous Absence Seizures in Rats , 2002, The Journal of Neuroscience.

[61]  Daesoo Kim,et al.  Lack of the Burst Firing of Thalamocortical Relay Neurons and Resistance to Absence Seizures in Mice Lacking α1G T-Type Ca2+ Channels , 2001, Neuron.

[62]  O. Dulac Epileptic Encephalopathy , 2001, Epilepsia.

[63]  C. Deransart,et al.  Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat , 2000, Neuroscience.

[64]  Susumu Tonegawa,et al.  Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex , 2000, Nature.

[65]  C. Fletcher,et al.  Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4(lh)) and tottering (Cacna1atg) mouse thalami. , 1999, Journal of neurophysiology.

[66]  J. Tepper,et al.  Inhibitory control of neostriatal projection neurons by GABAergic interneurons , 1999, Nature Neuroscience.

[67]  C. Deransart,et al.  Evidence for the involvement of the pallidum in the modulation of seizures in a genetic model of absence epilepsy in the rat , 1999, Neuroscience Letters.

[68]  L. Danober,et al.  Pathophysiological mechanisms of genetic absence epilepsy in the rat , 1998, Progress in Neurobiology.

[69]  A M Graybiel,et al.  Cortically Driven Immediate-Early Gene Expression Reflects Modular Influence of Sensorimotor Cortex on Identified Striatal Neurons in the Squirrel Monkey , 1997, The Journal of Neuroscience.

[70]  C. Deransart,et al.  Involvement of nigral glutamatergic inputs in the control of seizures in a genetic model of absence epilepsy in the rat , 1996, Neuroscience.

[71]  Z. Bortolotto,et al.  The basal ganglia, the deep prepyriform cortex, and seizure spread: bicuculline is anticonvulsant in the rat striatum. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[72]  G. Holmes,et al.  Absence seizures in children: Clinical and electroencephalographic features , 1987, Annals of neurology.