Characterization of Hg1−xCdxTe heterostructures by thermoelectric measurements

[1]  C. Viswanathan,et al.  Compositional analysis of HgCdTe epitaxial layers using secondary ion mass spectrometry , 1992 .

[2]  E. Gertner,et al.  p‐type doping of metalorganic chemical vapor deposition‐grown HgCdTe by arsenic and antimony , 1992 .

[3]  Jeremiah R. Lowney,et al.  Intrinsic carrier concentration of narrow‐gap mercury cadmium telluride based on the nonlinear temperature dependence of the band gap , 1992 .

[4]  D. Edwall,et al.  Arsenic doping in metalorganic chemical vapor deposition Hg1−xCdxTe using tertiarybutylarsine and diethylarsine , 1991 .

[5]  J. Ziegler,et al.  Determination of acceptor densities in p‐type Hg1−xCdxTe by thermoelectric measurements , 1991 .

[6]  E. Finkman,et al.  Simple approximation for Fermi energy in nonparabolic semiconductors , 1991 .

[7]  Jeremiah R. Lowney,et al.  Temperature and composition dependence of the energy gap of Hg1−xCdxTe by two‐photon magnetoabsorption techniques , 1990 .

[8]  J. Bajaj,et al.  MOCVD Hg1-xCdxTe/GaAs for IR detectors , 1990 .

[9]  E. Finkman,et al.  The exponential optical absorption band tail of Hg1−xCdxTe , 1984 .

[10]  J. Schmit,et al.  Calculation of intrinsic carrier concentration in Hg1−xCdxTe , 1983 .

[11]  J. Baars,et al.  Reststrahlen spectra of HgTe and CdxHg1-xTe , 1972 .

[12]  R. Petritz Theory of an Experiment for Measuring the Mobility and Density of Carriers in the Space-Charge Region of a Semiconductor Surface , 1958 .

[13]  J. Lowney,et al.  Intrinsic Carrier Concentrations in Long Wavelength HgCdTe Based on the New, Nonlinear Temperature Dependence of Eg(x,T) , 1990 .

[14]  J. Dubowski,et al.  Electron scattering in CdxHg1−xTe , 1981 .

[15]  E. Kane,et al.  Band structure of indium antimonide , 1957 .