Lead-free BaTiO3 nanowires-based flexible nanocomposite generator.

We have synthesized BaTiO3 nanowires (NWs) via a simple hydrothermal method at low temperature and developed a lead-free, flexible nanocomposite generator (NCG) device by a simple, low-cost, and scalable spin-coating method. The hydrothermally grown BaTiO3 NWs are mixed in a polymer matrix without a toxic dispersion enhancer to produce a piezoelectric nanocomposite (p-NC). During periodical and regular bending and unbending motions, the NCG device fabricated by utilizing a BaTiO3 NWs-polydimethylsiloxane (PDMS) composite successfully harvests the output voltage of ∼ 7.0 V and current signals of ∼ 360 nA, which are utilized to drive a liquid crystal display (LCD). We also characterized the instantaneous power (∼ 1.2 μW) of the NCG device by calculating the load voltage and current through the connected external resistance.

[1]  Di Wu,et al.  Fabrication and electrical properties of sol-gel derived BaTiO3 films with metallic LaNiO3 electrode , 1997 .

[2]  Q. Feng,et al.  Synthesis of Crystal-Axis-Oriented BaTiO3 and Anatase Platelike Particles by a Hydrothermal Soft Chemical Process , 2001 .

[3]  Hartmut S. Leipner,et al.  Raman microscopic investigations of BaTiO3 precursors with core–shell structure , 2004, Analytical and bioanalytical chemistry.

[4]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[5]  M. Lagache,et al.  Study of the interfacial MWS relaxation by dielectric spectroscopy in unidirectional PZT fibres/epoxy resin composites , 2007 .

[6]  M. Lagache,et al.  Interfacial polarization in piezoelectric fibre–polymer composites , 2007 .

[7]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[8]  Guang Zhu,et al.  Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. , 2009, Nano letters.

[9]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[10]  Zhong Lin Wang,et al.  Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. , 2010, Nature communications.

[11]  G. Zhu,et al.  Muscle‐Driven In Vivo Nanogenerator , 2010, Advanced materials.

[12]  Zhong Lin Wang,et al.  Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. , 2011, ACS nano.

[13]  Michael C. McAlpine,et al.  Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. , 2011, Nano letters.

[14]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[15]  Zhong Lin Wang,et al.  Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors , 2012, Nanotechnology.

[16]  Zhong Lin Wang,et al.  Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. , 2012, Angewandte Chemie.

[17]  Zhong Lin Wang,et al.  BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. , 2012, The journal of physical chemistry letters.

[18]  Chang Kyu Jeong,et al.  Flexible and Large‐Area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes , 2013 .

[19]  Insu Kim,et al.  Virus-directed design of a flexible BaTiO3 nanogenerator. , 2013, ACS nano.

[20]  Geon-Tae Hwang,et al.  Large‐Area and Flexible Lead‐Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler , 2014 .

[21]  Manoj Kumar Gupta,et al.  Unidirectional High‐Power Generation via Stress‐Induced Dipole Alignment from ZnSnO3 Nanocubes/Polymer Hybrid Piezoelectric Nanogenerator , 2014 .

[22]  Chang Kyu Jeong,et al.  Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates , 2014, Advanced materials.