The weak tail dependence coefficient of the elliptical generalized hyperbolic distribution

The strong and the weak tail dependence coefficients are measures that quantify the probability of conjoint extreme events of two random variables. Whereas formulas for both tail dependence coefficients exist for the Gaussian and Student t distribution, only the strong tail dependence coefficient is known for their super-model, the elliptical generalized hyperbolic distribution, which is extremely popular in finance (see Schmidt 2003). In this work we derive a simple expression for the corresponding weak tail dependence coefficient using the mixture representation of the elliptical generalized hyperbolic distribution.

[1]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Ernst Eberlein,et al.  Generalized Hyperbolic and Inverse Gaussian Distributions: Limiting Cases and Approximation of Processes , 2003 .

[3]  Janet E. Heffernan A Directory of Coefficients of Tail Dependence , 2000 .

[4]  B. Jørgensen Statistical Properties of the Generalized Inverse Gaussian Distribution , 1981 .

[5]  H. Joe Multivariate models and dependence concepts , 1998 .

[6]  E. Landau Handbuch der Lehre von der Verteilung der Primzahlen , 1974 .

[7]  Masaaki Sibuya,et al.  Bivariate extreme statistics, I , 1960 .

[8]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[9]  R. Reiss Approximate Distributions of Order Statistics , 1989 .

[10]  R. Nelsen An Introduction to Copulas , 1998 .

[11]  J. Lawless Statistical Models and Methods for Lifetime Data , 2002 .

[12]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[13]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[14]  E. Landau,et al.  Handbuch der Lehre von der Verteilung der Primzahlen , 1974 .

[15]  Rafael Schmidt,et al.  Tail dependence for elliptically contoured distributions , 2002, Math. Methods Oper. Res..

[16]  Janet E. Heffernan,et al.  Dependence Measures for Extreme Value Analyses , 1999 .

[17]  A. Ledford,et al.  Statistics for near independence in multivariate extreme values , 1996 .

[18]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[19]  P. Blæsild The two-dimensional hyperbolic distribution and related distributions, with an application to Johannsen's bean data , 1981 .