Quantifying aerosol direct radiative effect with Multiangle Imaging Spectroradiometer observations: Top-of-atmosphere albedo change by aerosols based on land surface types

Using internally consistent albedo, aerosol, cloud, and surface data from the Multiangle Imaging Spectroradiometer (MISR) instrument onboard the Terra satellite, top-of-atmosphere (TOA) spectral albedo change (dα) in the presence of aerosols over land is estimated and its dependence on aerosol and surface properties is analyzed. Linear regressions between spectral TOA albedo and aerosol optical depth (AOD) for different surface types are examined to derive the aerosol-free TOA albedo. MISR surface BiHemispherical Reflectance (BHR) values are used to differentiate surface types. We find relatively high correlations between spectral TOA albedo and AOD for BHR-stratified data in 2° × 2° grid cells. The global mean values of cloud-free dα over land for June–September 2007 are estimated to be 0.018 ± 0.003 (blue), 0.010 ± 0.003 (green), 0.007 ± 0.003 (red), and 0.008 ± 0.006 (near-infrared). Individual regions show large variations from these values. Global patterns of dα are determined mainly by AOD and aerosol radiative efficiency. Large positive values of dα are observed over regions with high aerosol loading and large single-scattering albedo, where the aerosol scattering effect is dominant. The presence of light-absorbing aerosols reduces aerosol radiative efficiency and dα. Surface reflectance influences both aerosol scattering and absorbing effects. Generally, the aerosol radiative efficiency decreases with increasing BHR. We also examined dα-AOD correlations over different vegetation types. We find the smallest dα values are over needleleaf forests and shrublands, whereas the largest values are over cropland and barren regions. The aerosol radiative efficiencies are lowest over needleleaf forests and barren regions and highest over grasslands and croplands.

[1]  Philip B. Russell,et al.  Wavelength Dependence of the Absorption of Black Carbon Particles: Predictions and Results from the TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo , 2002 .

[2]  A Lacis,et al.  Climate forcings in the industrial era. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Roger Davies,et al.  Level 2 Top-of-Atmosphere Albedo Algorithm Theorectical Basis , 1999 .

[4]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[5]  J. Muller,et al.  The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces , 2005 .

[6]  M. Andreae,et al.  Aerosols and Climate , 2002 .

[7]  P. Quinn,et al.  A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments , 2000 .

[8]  Ralph A. Kahn,et al.  Sensitivity of multiangle imaging to the optical and microphysical properties of biomass burning aerosols , 2008 .

[9]  R. Charlson,et al.  Sulphate aerosol and climate , 1990, Nature.

[10]  William L. Smith,et al.  A parameterization of ocean surface albedo , 2004 .

[11]  Multi-angle Imaging SpectroRadiometer , 2011 .

[12]  Oleg Dubovik,et al.  Angstrom exponent and bimodal aerosol size distributions , 2006 .

[13]  Robert D. Cess,et al.  The Effect of Tropospheric Aerosols on the Earth's Radiation Budget: A Parameterization for Climate Models , 1983 .

[14]  Hirokazu Yamamoto,et al.  Inter-Comparison of ASTER and MODIS Surface Reflectance and Vegetation Index Products for Synergistic Applications to Natural Resource Monitoring , 2008, Sensors.

[15]  David J. Diner,et al.  Comparison of MISR and AERONET aerosol optical depths over desert sites , 2003 .

[16]  Yoram J. Kaufman,et al.  Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data , 2006 .

[17]  D. Diner,et al.  The MISR radiometric calibration process , 2007 .

[18]  David J. Diner,et al.  Comparison of coincident Multiangle Imaging Spectroradiometer and Moderate Resolution Imaging Spectroradiometer aerosol optical depths over land and ocean scenes containing Aerosol Robotic Network sites , 2005 .

[19]  J. Dutoit The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) , 2007 .

[20]  Yang Liu,et al.  Validation of Multiangle Imaging Spectroradiometer (MISR) aerosol optical thickness measurements using Aerosol Robotic Network (AERONET) observations over the contiguous United States , 2004 .

[21]  David J. Diner,et al.  Level 2 Aerosol Retrieval Algorithm Theoretical Basis , 1999 .

[22]  L R Bissonnette,et al.  Multiscattering model for propagation of narrow light beams in aerosol media. , 1988, Applied optics.

[23]  Yoram J. Kaufman,et al.  Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations , 2004 .

[24]  C. Gautier,et al.  A comparison of aerosol optical properties obtained from in situ measurements and retrieved from Sun and sky radiance observations during the May 2003 ARM Aerosol Intensive Observation Period , 2006 .

[25]  Kathleen A. Crean,et al.  Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations : Global aerosol system , 2005 .

[26]  B. Holben,et al.  Validation of MODIS aerosol optical depth retrieval over land , 2002 .

[27]  Ralph A. Kahn,et al.  Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean , 2001 .

[28]  Michael I. Mishchenko,et al.  Toward unified satellite climatology of aerosol properties: Direct comparisons of advanced level 2 aerosol products , 2008 .

[29]  Sundar A. Christopher,et al.  First observational estimates of global clear sky shortwave aerosol direct radiative effect over land , 2008 .

[30]  R. Kahn,et al.  The Sensitivity of Multiangle Imaging to Natural Mixes of Aerosols Over Ocean , 2001 .

[31]  Pedro Viterbo,et al.  The land surface‐atmosphere interaction: A review based on observational and global modeling perspectives , 1996 .

[32]  P. Pilewskie,et al.  Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000 , 2003 .

[33]  Brian Cairns,et al.  Toward unified satellite climatology of aerosol properties.: 3. MODIS versus MISR versus AERONET , 2010 .

[34]  Natividad Manalo-Smith,et al.  Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS Observations , 2005 .

[35]  Sundar A. Christopher,et al.  Shortwave Aerosol Radiative Forcing from MODIS and CERES observations over the oceans , 2002 .

[36]  R. Davies,et al.  Comparison of MISR and CERES top‐of‐atmosphere albedo , 2006 .

[37]  S. Satheesh Aerosol radiative forcing over land: effect of surface and cloud reflection , 2002 .

[38]  M. Chin,et al.  A review of measurement-based assessments of the aerosol direct radiative effect and forcing , 2005 .

[39]  W. Collins,et al.  An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models , 2005 .

[40]  G. J. Babu,et al.  Linear regression in astronomy. II , 1990 .

[41]  Norman G. Loeb,et al.  Top-of-atmosphere direct radiative effect of aerosols over the Tropical Oceans from the Clouds and t , 2002 .

[42]  Yoram J. Kaufman,et al.  An “A-Train” Strategy for Quantifying Direct Climate Forcing by Anthropogenic Aerosols , 2005 .

[43]  Timothy S. Bates,et al.  Regional aerosol properties: Comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS , 2005 .

[44]  Joyce Chou,et al.  Shortwave direct radiative forcing of biomass burning aerosols estimated using VIRS and CERES data , 2000 .

[45]  Olga V. Kalashnikova,et al.  The ability of multi-angle remote sensing observations to identify and distinguish mineral dust types : Part 2 . Sensitivity data analysis , 2004 .

[46]  M. Hansen,et al.  The DISCover validation image interpretation process , 1999 .

[47]  Michael J. Garay,et al.  An operational MISR pixel classifier using support vector machines , 2007 .

[48]  Petr Chylek,et al.  Limits on climate sensitivity derived from recent satellite and surface observations , 2007 .

[49]  S. Phinn,et al.  Analysis of multi-date MISR measurements for forest and woodland communities, Queensland, Australia , 2007 .

[50]  Bernard Pinty,et al.  Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview , 1998, IEEE Trans. Geosci. Remote. Sens..

[51]  P. Chyacutelek,et al.  Aerosols and climate. , 1974 .

[52]  Olga V. Kalashnikova,et al.  Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: 2. Sensitivity over dark water , 2006 .

[53]  Thomas R. Loveland,et al.  The IGBP-DIS global 1 km land cover data set , 1997 .

[54]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .

[55]  D. Diner,et al.  Analysis of the MISR LAI/FPAR product for spatial and temporal coverage, accuracy and consistency , 2007 .

[56]  Yoram J. Kaufman,et al.  Relationship between surface reflectance in the visible and mid‐IR used in MODIS aerosol algorithm ‐ theory , 2002 .

[57]  Brian Cairns,et al.  Long-Term Satellite Record Reveals Likely Recent Aerosol Trend , 2007, Science.

[58]  C. Tucker,et al.  Satellite remote sensing of primary production , 1986 .