Early science with the LMT: molecular torus in UGC 5101

As part of the Early Science Large Millimeter Telescope projects, we report the detection of nine double-peaked molecular lines, produced by a rotating molecular torus, in the ultraluminous infrared galaxies (ULIRG) – Compton-thick active galactic nuclei (AGN) galaxy UGC 5101. The double-peaked lines we report correspond to molecular transitions of HCN, HCO+, HNC, N2H+, CS, C18O, 13CO, and two CN lines; plus the detection of C2H that is a blend of six lines. The redshift search receiver spectra covers the 73–113 GHz frequency window. Low- and high-density gas tracers of the torus have different implied rotational velocities, with a rotational velocity of 149 ± 3  km s−1 for the low-density ones (C18O, 13CO) and 174 ± 3  km s−1 for high-density tracers (HCN, HCO+, HNC, N2H+, CS, and CN). In UGC 5101, we find that the ratio of integrated intensities of HCN to 13CO to be unusually large, probably indicating that the gas in the torus is very dense. Both the column densities and abundances are consistent with values found in AGN, starburst, and ULIRG galaxies. The observed abundance ratios cannot discriminate between X-ray and UV-field-dominated regions.

[1]  D. Schiminovich,et al.  xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies , 2017, 1710.02157.

[2]  M. Malkan,et al.  Emission Line Properties of Seyfert Galaxies in the 12 μm Sample , 2017, 1708.08563.

[3]  Masatoshi Imanishi,et al.  Shedding Light on the Compton-thick Active Galactic Nucleus in the Ultraluminous Infrared Galaxy UGC 5101 with Broadband X-Ray Spectroscopy , 2016, 1612.07450.

[4]  P. Roche,et al.  The complex evolutionary paths of local infrared bright galaxies: a high-angular resolution mid-infrared view , 2016, 1608.08751.

[5]  U. Toronto,et al.  Early Science with the Large Millimeter Telescope: COOL BUDHIES I - a pilot study of molecular and atomic gas at z ≃ 0.2 , 2015, 1510.08450.

[6]  H. J. Borish,et al.  EXCITATION MECHANISMS FOR HCN(1–0) AND HCO+(1–0) IN GALAXIES FROM THE GREAT OBSERVATORIES ALL-SKY LIRG SURVEY , 2015, 1509.07512.

[7]  A. Ramos,et al.  A deep look at the nuclear region of UGC 5101 through high angular resolution mid-IR data with GTC/CanariCam , 2015, 1509.04396.

[8]  K. Souccar,et al.  Early Science with the Large Millimeter Telescope: CO and [C ii] Emission in the z = 4.3 AzTEC J095942.9+022938 (COSMOS AzTEC-1) , 2015, 1508.05425.

[9]  C. Kramer,et al.  Lambda = 3 mm line survey of nearby active galaxies , 2015, 1504.03743.

[10]  University of British Columbia,et al.  THE 1% CONCORDANCE HUBBLE CONSTANT , 2014, 1406.1718.

[11]  M. Yun,et al.  Molecular Gas Content of HI Monsters and Implications to Cold Gas Content Evolution in Galaxies , 2014, 1404.4371.

[12]  A. Leroy,et al.  A HIGH-DISPERSION MOLECULAR GAS COMPONENT IN NEARBY GALAXIES , 2013, 1309.6324.

[13]  R. Snell,et al.  CO abundance variations in the Orion Molecular Cloud , 2013, 1302.2679.

[14]  N. Scoville Evolution of star formation and gas , 2012, 1210.6990.

[15]  E. Treister,et al.  MAJOR GALAXY MERGERS ONLY TRIGGER THE MOST LUMINOUS ACTIVE GALACTIC NUCLEI , 2012, 1209.5393.

[16]  S. Veilleux The Latest Results from QUEST, the Quasar and ULIRG Evolution Study , 2012 .

[17]  P. Hopkins,et al.  The structure of the interstellar medium of star‐forming galaxies , 2011, 1110.4636.

[18]  B. Weiner,et al.  THE METALLICITY DEPENDENCE OF THE CO → H2 CONVERSION FACTOR IN z ⩾ 1 STAR-FORMING GALAXIES , 2011, 1106.2098.

[19]  R. Giovanelli,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - II. The non-universality of the molecular gas depletion time-scale , 2011, 1104.0019.

[20]  R. Giovanelli,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies – I. Relations between H2, H i, stellar content and structural properties , 2011, 1103.1642.

[21]  P. Hopkins,et al.  Self-regulated star formation in galaxies via momentum input from massive stars , 2011, 1101.4940.

[22]  S. Muller,et al.  Molecules as tracers of galaxy evolution: an EMIR survey I. Presentation of the data and first results , 2011, 1101.2122.

[23]  N. Erickson,et al.  THE REDSHIFT SEARCH RECEIVER 3 mm WAVELENGTH SPECTRA OF 10 GALAXIES , 2010, 1101.0132.

[24]  Columbia,et al.  Optical vs. infrared studies of dusty galaxies and AGN: (I) Nebular emission lines , 2010, 1008.3160.

[25]  Marco Spaans,et al.  Highlights in Astronomy , 2010 .

[26]  L. Kewley,et al.  THE ROLE OF STARBURST–ACTIVE GALACTIC NUCLEUS COMPOSITES IN LUMINOUS INFRARED GALAXY MERGERS: INSIGHTS FROM THE NEW OPTICAL CLASSIFICATION SCHEME , 2009, 0911.3728.

[27]  M. Guainazzi,et al.  FITTING LINER NUCLEI WITHIN THE ACTIVE GALACTIC NUCLEUS FAMILY: A MATTER OF OBSCURATION? , 2009, 0909.4082.

[28]  Christine D. Wilson,et al.  LUMINOUS INFRARED GALAXIES WITH THE SUBMILLIMETER ARRAY. II. COMPARING THE CO (3–2) SIZES AND LUMINOSITIES OF LOCAL AND HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES , 2009, 0902.0121.

[29]  Y. Tamura,et al.  NOBEYAMA MILLIMETER INTERFEROMETRIC HCN(1–0) AND HCO+(1–0) OBSERVATIONS OF FURTHER LUMINOUS INFRARED GALAXIES , 2009, 0901.0704.

[30]  P. Hopkins,et al.  A CHARACTERISTIC DIVISION BETWEEN THE FUELING OF QUASARS AND SEYFERTS: FIVE SIMPLE TESTS , 2008, 0812.2915.

[31]  Christine D. Wilson,et al.  Luminous Infrared Galaxies with the Submillimeter Array. I. Survey Overview and the Central Gas to Dust Ratio , 2008, 0806.3002.

[32]  Ž. Ivezić,et al.  AGN Dusty Tori. II. Observational Implications of Clumpiness , 2008, 0806.0512.

[33]  Zeljko Ivezic,et al.  AGN Dusty Tori. I. Handling of Clumpy Media , 2008, 0806.0511.

[34]  T. Wiklind,et al.  Dense gas in luminous infrared galaxies , 2007, 0710.0141.

[35]  S. Aalto Chemistry in luminous AGN and starburst galaxies , 2008 .

[36]  R. Meijerink,et al.  Diagnostics of irradiated dense gas in galaxy nuclei. II. A grid of XDR and PDR models , 2006, astro-ph/0610360.

[37]  J. Dunlop,et al.  From Z-Machines to Alma: (SUB) Millimeter Spectroscopy of Galaxies , 2007 .

[38]  E. Wright A Cosmology Calculator for the World Wide Web , 2006, astro-ph/0609593.

[39]  R. Meijerink,et al.  Irradiated ISM: Discriminating between Cosmic Rays and X-Rays , 2006, astro-ph/0609184.

[40]  C. Lonsdale,et al.  Ultraluminous Infrared Galaxies , 2006, astro-ph/0603031.

[41]  K. Kohno,et al.  Millimeter Interferometric Investigations of the Energy Sources of Three Ultraluminous Infrared Galaxies, UGC 5101, Markarian 273, and IRAS 17208−0014, Based on HCN-to-HCO+ Ratios , 2006, astro-ph/0602227.

[42]  R. Meijerink,et al.  Diagnostics of irradiated gas in galaxy nuclei. I. A far-ultraviolet and X-ray dominated region code , 2005, astro-ph/0502454.

[43]  P. Solomon,et al.  The Star Formation Rate and Dense Molecular Gas in Galaxies , 2003, astro-ph/0310339.

[44]  P. Solomon,et al.  HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies , 2003, astro-ph/0310341.

[45]  T. Nakagawa,et al.  X-Ray Evidence of a Buried Active Galactic Nucleus in UGC 5101 , 2003, astro-ph/0309425.

[46]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[47]  C. Lonsdale,et al.  VLBI Imaging of Luminous Infrared Galaxies: Active Galactic Nucleus Cores in Markarian 231, UGC 5101, and NGC 7469 , 2003, astro-ph/0304335.

[48]  T. Heckman,et al.  A Chandra Survey of the Nearest Ultraluminous Infrared Galaxies: Obscured Active Galactic Nuclei or Superstarbursts? , 2003 .

[49]  NasaGsfc,et al.  A Chandra Survey of the Nearest ULIRGs: Obscured AGN or Super-Starbursts? , 2003, astro-ph/0304222.

[50]  S. Veilleux,et al.  Optical and Near-Infrared Imaging of the IRAS 1 Jy Sample of Ultraluminous Infrared Galaxies. II. The Analysis , 2002, astro-ph/0207373.

[51]  C. Carilli,et al.  Radio-to-Far-Infrared Spectral Energy Distribution and Photometric Redshifts for Dusty Starburst Galaxies , 2001, astro-ph/0112074.

[52]  J. Surace,et al.  High Resolution Mid-Infrared Imaging of Ultraluminous Infrared Galaxies* , 1999, astro-ph/9911045.

[53]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[54]  Joseph M. Mazzarella,et al.  HST/WFPC2 Observations of Warm Ultraluminous Infrared Galaxies , 1998 .

[55]  D. Kunze,et al.  What Powers Ultraluminous IRAS Galaxies? , 1997, astro-ph/9711255.

[56]  JO Wdaij ULTRALUMINOUS INFRARED GALAXIES , 1997 .

[57]  S. Veilleux,et al.  Optical Spectroscopy of Luminous Infrared Galaxies II. Analysis of the Nuclear and long-Slit Data , 1995 .

[58]  L. Hernquist,et al.  Dynamics of Interacting Galaxies , 1992 .

[59]  D. Frayer,et al.  UGC galaxies stronger than 25 mJy at 4.85 GHz , 1991 .

[60]  N. Scoville,et al.  Molecular gas in galaxies , 1991 .

[61]  George Helou,et al.  A 1. 49 GHz atlas of the IRAS Bright Galaxy Sample , 1990 .

[62]  G. Neugebauer,et al.  Ultraluminous infrared galaxies and the origin of quasars , 1988 .

[63]  G. Wright,et al.  Recent star formation in interacting galaxies - II. Super starbursts in merging galaxies. , 1985 .