Long cycles through prescribed vertices have the Erdős‐Pósa property

We prove that for every graph, any vertex subset S, and given integers k, `: there are k disjoint cycles of length at least ` that each contain at least one vertex from S, or a vertex set of size O(` · k log k) that meets all such cycles. This generalises previous results of Fiorini and Hendrickx and of Pontecorvi and Wollan. In addition, we describe an algorithm for our main result that runs in O(k log k · s · (f(`) · n+m)) time, where s denotes the cardinality of S.

[1]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[2]  Ken-ichi Kawarabayashi,et al.  Packing cycles through prescribed vertices , 2011, J. Comb. Theory, Ser. B.

[3]  Ken-ichi Kawarabayashi,et al.  Packing Directed Circuits through Prescribed Vertices Bounded Fractionally , 2012, SIAM J. Discret. Math..

[4]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests with Depth-First Search , 1993, J. Algorithms.

[5]  Henning Bruhn,et al.  Long Cycles have the Edge-Erdős-Pósa Property , 2016, Comb..

[6]  Paul Wollan,et al.  Disjoint cycles intersecting a set of vertices , 2012, J. Comb. Theory, Ser. B.

[7]  Frédéric Havet,et al.  On disjoint directed cycles with prescribed minimum lengths , 2013 .

[8]  B. Mohar,et al.  Graph Minors , 2009 .

[9]  Bruce A. Reed,et al.  Packing directed circuits , 1996, Comb..

[10]  Bruce A. Reed,et al.  The Erdős–Pósa Property for Odd Cycles in Highly Connected Graphs , 2001, Comb..

[11]  László Lovász,et al.  Cycles through specified vertices of a graph , 1981, Comb..

[12]  Bruce A. Reed,et al.  The Erdős–Pósa Property For Long Circuits , 2007, Comb..

[13]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[14]  P. Erd Os,et al.  On the maximal number of disjoint circuits of a graph , 2022, Publicationes Mathematicae Debrecen.

[15]  Henning Bruhn,et al.  K4-expansions have the edge-Erdős-Pósa property , 2017, Electron. Notes Discret. Math..

[16]  M. Simonovits A new proof and generalizations of a theorem of Erdős and Pósa on graphs withoutk+1 independent circuits , 1967 .

[17]  Paul Wollan,et al.  The Erdős-Pósa property for clique minors in highly connected graphs , 2012, J. Comb. Theory, Ser. B.

[18]  G. Dirac In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen† , 1960 .

[19]  Carsten Thomassen,et al.  The Erdős–Pósa Property for Odd Cycles in Graphs of Large Connectivity , 2001, Comb..

[20]  Paul Wollan,et al.  Packing cycles with modularity constraints , 2011, Comb..

[21]  Dieter Rautenbach,et al.  The Erdős-Pósa Property for Long Circuits , 2014, J. Graph Theory.

[22]  Carsten Thomassen,et al.  On the presence of disjoint subgraphs of a specified type , 1988, J. Graph Theory.

[23]  Samuel Fiorini,et al.  A Tighter Erdős‐Pósa Function for Long Cycles , 2012, J. Graph Theory.

[24]  Felix Joos,et al.  Parity Linkage and the Erdős–Pósa Property of Odd Cycles through Prescribed Vertices in Highly Connected Graphs , 2014, J. Graph Theory.

[25]  Paul Wollan,et al.  Non-zero disjoint cycles in highly connected group labeled graphs , 2005, Electron. Notes Discret. Math..

[26]  Frank Mousset,et al.  A tight Erdős-Pósa function for long cycles , 2017, J. Comb. Theory, Ser. B.