Strengthening McEliece Cryptosystem

McEliece cryptosystem is a public-key cryptosystem based on error-correcting codes. It constitutes one of the few alternatives to cryptosystems relying on number theory. We present a modification of the McEliece cryptosystem which strengthens its security without increasing the size of the public key. We show that it is possible to use some properties of the automorphism groups of the codes to build decodable patterns of large weight errors. This greatly strengthens the system against the decoding attacks.

[1]  Donald W. Davies,et al.  Advances in Cryptology — EUROCRYPT ’91 , 2001, Lecture Notes in Computer Science.

[2]  J. K. Gibson,et al.  Severely denting the Gabidulin version of the McEliece Public Key Cryptosystem , 1995, Des. Codes Cryptogr..

[3]  Kazuo Ohta,et al.  Advances in Cryptology — ASIACRYPT’98 , 2002, Lecture Notes in Computer Science.

[4]  Anne Canteaut,et al.  Attaques de cryptosystemes a mots de poids faible et construction de fonctions t-resilientes , 1996 .

[5]  Anne Canteaut,et al.  Cryptanalysis of the Original McEliece Cryptosystem , 1998, ASIACRYPT.

[6]  Robert J. McEliece,et al.  A public key cryptosystem based on algebraic coding theory , 1978 .

[7]  Alan G. Konheim,et al.  A note on growing binary trees , 1973, Discret. Math..

[8]  Nicolas Sendrier,et al.  The Support Splitting Algorithm , 1999 .

[9]  Robert H. Deng,et al.  On the equivalence of McEliece's and Niederreiter's public-key cryptosystems , 1994, IEEE Trans. Inf. Theory.

[10]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[11]  J. K. Gibson,et al.  Equivalent Goppa Codes and Trapdoors to McEliece's Public Key Cryptosystem , 1991, EUROCRYPT.

[12]  N. Sendrier,et al.  Some weak keys in McEliece public-key cryptosystem , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[13]  Ernst M. Gabidulin,et al.  Ideals over a Non-Commutative Ring and thier Applications in Cryptology , 1991, EUROCRYPT.

[14]  R. Lathe Phd by thesis , 1988, Nature.

[15]  Nicholas J. Patterson,et al.  The algebraic decoding of Goppa codes , 1975, IEEE Trans. Inf. Theory.

[16]  Nicolas Sendrier,et al.  On the Concatenated Structure of a Linear Code , 1998, Applicable Algebra in Engineering, Communication and Computing.