Room temperature in-plane ferroelectricity in van der Waals In2Se3

We report the discovery of room temperature in-plane ferroelectricity in van der Waals In2Se3 with β′ phase. Van der Waals (vdW) assembly of layered materials is a promising paradigm for creating electronic and optoelectronic devices with novel properties. Ferroelectricity in vdW layered materials could enable nonvolatile memory and low-power electronic and optoelectronic switches, but to date, few vdW ferroelectrics have been reported, and few in-plane vdW ferroelectrics are known. We report the discovery of in-plane ferroelectricity in a widely investigated vdW layered material, β′-In2Se3. The in-plane ferroelectricity is strongly tied to the formation of one-dimensional superstructures aligning along one of the threefold rotational symmetric directions of the hexagonal lattice in the c plane. Surprisingly, the superstructures and ferroelectricity are stable to 200°C in both bulk and thin exfoliated layers of In2Se3. Because of the in-plane nature of ferroelectricity, the domains exhibit a strong linear dichroism, enabling novel polarization-dependent optical properties.

[1]  David B. Williams,et al.  The Transmission Electron Microscope , 2009 .

[2]  Peng Li,et al.  Intercorrelated In-Plane and Out-of-Plane Ferroelectricity in Ultrathin Two-Dimensional Layered Semiconductor In2Se3. , 2018, Nano letters.

[3]  H. Peng,et al.  Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes. , 2017, Nano letters.

[4]  Zhenyu Zhang,et al.  Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials , 2017, Nature Communications.

[5]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[6]  L. Bellaiche,et al.  Photostrictive Two-Dimensional Materials in the Monochalcogenide Family. , 2017, Physical review letters.

[7]  H. Zeng,et al.  New Ferroelectric Phase in Atomic-Thick Phosphorene Nanoribbons: Existence of in-Plane Electric Polarization. , 2016, Nano letters.

[8]  M. Guennou,et al.  Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate , 2016, Scientific Reports.

[9]  P. Ajayan,et al.  Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes , 2016, Nature Communications.

[10]  W. Duan,et al.  Discovery of robust in-plane ferroelectricity in atomic-thick SnTe , 2016, Science.

[11]  Xiaofeng Qian,et al.  Two-dimensional multiferroics in monolayer group IV monochalcogenides , 2016, 1606.04522.

[12]  Emily F. Smith,et al.  Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport , 2016 .

[13]  Xiao Cheng Zeng,et al.  Intrinsic Ferroelasticity and/or Multiferroicity in Two-Dimensional Phosphorene and Phosphorene Analogues. , 2016, Nano letters.

[14]  W. Kang,et al.  Ferroelectricity and Phase Transitions in Monolayer Group-IV Monochalcogenides. , 2016, Physical review letters.

[15]  D. F. Ogletree,et al.  Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2 , 2016, Nature Physics.

[16]  A. M. van der Zande,et al.  Structural Phase Transition and Material Properties of Few-Layer Monochalcogenides. , 2016, Physical review letters.

[17]  K. T. Law,et al.  Evidence for two-dimensional Ising superconductivity in gated MoS2 , 2015, Science.

[18]  Yi Zhang,et al.  A lead-halide perovskite molecular ferroelectric semiconductor , 2015, Nature Communications.

[19]  Sergei V. Kalinin,et al.  CuInP₂S₆ Room Temperature Layered Ferroelectric. , 2015, Nano letters.

[20]  A. Locatelli,et al.  Reversible switching of in-plane polarized ferroelectric domains in BaTiO3(001) with very low energy electrons , 2014, Scientific Reports.

[21]  Zhongfan Liu,et al.  The rare two-dimensional materials with Dirac cones , 2014, 1410.5895.

[22]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[23]  John Drennan,et al.  Indium selenides: structural characteristics, synthesis and their thermoelectric performances. , 2014, Small.

[24]  Bin Yu,et al.  Extraordinary photoresponse in two-dimensional In(2)Se(3) nanosheets. , 2014, ACS nano.

[25]  Di Wu,et al.  Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. , 2013, Journal of the American Chemical Society.

[26]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[27]  A. Locatelli,et al.  Full field electron spectromicroscopy applied to ferroelectric materials , 2013, 1806.04849.

[28]  G. Giovannetti,et al.  Diisopropylammonium Bromide Is a High-Temperature Molecular Ferroelectric Crystal , 2013, Science.

[29]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[30]  Y. Takamura,et al.  Spatially resolved strain-imprinted magnetic states in an artificial multiferroic , 2012 .

[31]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[32]  K. Bouzehouane,et al.  Imaging ferroelectric domains in multiferroics using a low‐energy electron microscope in the mirror operation mode , 2010, 1008.2861.

[33]  Yi Cui,et al.  Synthesis and phase transformation of In(2)Se(3) and CuInSe(2) nanowires. , 2007, Journal of the American Chemical Society.

[34]  Keigo Suzuki,et al.  Optical Band Gap of Barium Titanate Nanoparticles Prepared by RF-plasma Chemical Vapor Deposition , 2005 .

[35]  Dae-Hwan Kang,et al.  Switching behavior of indium selenide-based phase-change memory cell , 2005 .

[36]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[37]  H. Padmore,et al.  Principles of X-ray magnetic dichroism spectromicroscopy , 1998 .

[38]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[39]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[40]  E. Bauer,et al.  Low energy electron microscopy , 1994 .

[41]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[42]  C. Manolikas New results on the phase transformations of In2Se3 , 1988 .

[43]  J. Flahaut,et al.  Transitions de la forme de haute température α de In2Se3, de part et d'autre de la température ambiante , 1980 .

[44]  S. Popović,et al.  A remark on the paper “phase transitions in in2Se3 as studied by electron microscopy and electron diffraction” , 1976 .

[45]  G. Tendeloo,et al.  Phase transitions in In2Se3 as studied by electron microscopy and electron diffraction , 1975 .

[46]  Andrew M. Rappe,et al.  Thin-film ferroelectric materials and their applications , 2017 .

[47]  H. Peng,et al.  Manipulating surface diffusion ability of single molecules by scanning tunneling microscopy. , 2009, Nano letters.

[48]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .