Determination of a control parameter in a one-dimensional parabolic equation using the moving least-square approximation

In this paper the approximation of moving least-square (MLS) is used for finding the solution of a one-dimensional parabolic inverse problem with source control parameter. Comparing with other numerical methods based on meshes such as finite difference method, finite element method and boundary element method, etc. the MLS approximation has merits of simpler numerical procedures, lower computation cost and arbitrary nodes. The result of a numerical example is presented.

[1]  Yanping Lin,et al.  Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations , 1994 .

[2]  S. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) method , 2002 .

[3]  Weimin Han,et al.  Error analysis of the reproducing kernel particle method , 2001 .

[4]  M. Baines Moving finite elements , 1994 .

[5]  Mehdi Dehghan,et al.  Finding a control parameter in one-dimensional parabolic equations , 2003, Appl. Math. Comput..

[6]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[7]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[8]  S. Atluri,et al.  A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach , 1998 .

[9]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[10]  I. Babuska,et al.  Meshless and Generalized Finite Element Methods: A Survey of Some Major Results , 2003 .

[11]  Eugenio Oñate,et al.  A finite point method for elasticity problems , 2001 .

[12]  S. Mukherjee,et al.  THE BOUNDARY NODE METHOD FOR POTENTIAL PROBLEMS , 1997 .

[13]  Cheng Yu-min,et al.  Boundary element-free method for elastodynamics , 2005 .

[14]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[15]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[16]  Gang Li,et al.  Positivity conditions in meshless collocation methods , 2004 .

[17]  S. Atluri,et al.  A meshless local boundary integral equation (LBIE) method for solving nonlinear problems , 1998 .

[18]  Mehdi Dehghan,et al.  Fourth-order techniques for identifying a control parameter in the parabolic equations , 2002 .

[19]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[20]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[21]  K. M. Liew,et al.  A boundary element-free method (BEFM) for three-dimensional elasticity problems , 2005 .

[22]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[23]  Yanping Lin,et al.  Determination of source parameter in parabolic equations , 1992 .

[24]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[25]  Weimin Han,et al.  Reproducing kernel element method. Part I: Theoretical formulation , 2004 .

[26]  Yanping Lin,et al.  An inverse problem of finding a parameter in a semi-linear heat equation , 1990 .

[27]  J. Monaghan Why Particle Methods Work , 1982 .

[28]  Mehdi Dehghan,et al.  Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions , 2006, Math. Comput. Model..

[29]  Mehdi Dehghan,et al.  Parameter determination in a partial differential equation from the overspecified data , 2005, Math. Comput. Model..

[30]  John R. Cannon,et al.  Numerical solutions of some parabolic inverse problems , 1990 .

[31]  Jianming Zhang,et al.  A hybrid boundary node method , 2002 .

[32]  G. Fasshauer Approximate Moving Least-Squares Approximation with Compactly Supported Radial Weights , 2003 .