Bridging the gap between human knowledge and machine learning

Nowadays, great amount of data is being created by several sources from academic, scientific, business and industrial activities. Such data intrinsically contains meaningful information allowing for developing techniques, and have scientific validity to explore the information thereof. In this connection, the aim of artificial intelligence (AI) is getting new knowledge to make decisions properly. AI has taken an important place in scientific and technology development communities, and recently develops computer-based processing devices for modern machines. Under the premise, the premise that the feedback provided by human reasoning -which is holistic, flexible and parallel- may enhance the data analysis, the need for the integration of natural and artificial intelligence has emerged. Such an integration makes the process of knowledge discovery more effective, providing the ability to easily find hidden trends and patterns belonging to the database predictive model. As well, allowing for new observations and considerations from beforehand known data by using both data analysis methods and knowledge and skills from human reasoning. In this work, we review main basics and recent works on artificial and natural intelligence integration in order to introduce users and researchers on this emergent field. As well, key aspects to conceptually compare them are provided.

[1]  Francisco José García Peñalvo,et al.  Visual Analytics to Support E-learning , 2010 .

[2]  James J. Gibson,et al.  The Ecological Approach to Visual Perception: Classic Edition , 2014 .

[3]  Peng Hu,et al.  Research on Personalized Behaviors Recommendation System Based on Cloud Computing , 2013 .

[4]  John T. Stasko,et al.  Guest Editors' Introduction: Discovering the Unexpected , 2007, IEEE Computer Graphics and Applications.

[5]  Ross W. Gayler,et al.  A Comprehensive Survey of Data Mining-based Fraud Detection Research , 2010, ArXiv.

[6]  Juan C. Alvarado-Pérez,et al.  Artificial and Natural Intelligence Integration , 2015, DCAI.

[7]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[8]  Stphane Tuffry,et al.  Data Mining and Statistics for Decision Making , 2011 .

[9]  Philip S. Yu,et al.  Data Mining: An Overview from a Database Perspective , 1996, IEEE Trans. Knowl. Data Eng..

[10]  Kyoungok Kim,et al.  Sentiment visualization and classification via semi-supervised nonlinear dimensionality reduction , 2014, Pattern Recognit..

[11]  J. Nathan Kutz,et al.  Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data , 2013 .

[12]  D. Yen,et al.  Identifying the signs of fraudulent accounts using data mining techniques , 2010, Comput. Hum. Behav..

[13]  Jason Dykes,et al.  Developing and Applying a User-Centered Model for the Design and Implementation of Information Visualization Tools , 2011, 2011 15th International Conference on Information Visualisation.

[14]  Heikki Mannila,et al.  A database perspective on knowledge discovery , 1996, CACM.

[15]  Thomas G. Dietterich Machine-Learning Research Four Current Directions , 1997 .

[16]  J. Carrión Técnicas de análisis de datos nominales , 1989 .

[17]  Thomas G. Dietterich Machine Learning 1 , 1996 .

[18]  Diego Hernán Peluffo-Ordóñez,et al.  Knowledge discovery in databases from a perspective of intelligent information visualization , 2015, 2015 20th Symposium on Signal Processing, Images and Computer Vision (STSIVA).

[19]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[20]  Ravishankar Palaniappan Data Visualization: Creating Mind’s Eye , 2014 .

[21]  Ricardo Timarán Pereira Arquitecturas de integración del proceso de descubrimiento de conocimiento con sistemas de gestión de bases de datos: un estado del arte , 2011 .

[22]  N. Turk-Browne Functional Interactions as Big Data in the Human Brain , 2013, Science.

[23]  Casimir A. Kulikowski,et al.  Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert Systems , 1990 .

[24]  Gregory Piatetsky-Shapiro,et al.  The KDD process for extracting useful knowledge from volumes of data , 1996, CACM.

[25]  Roberto Therón,et al.  Diachronic-information visualization in historical dictionaries , 2015, Inf. Vis..

[26]  José Rafael Díaz El Impacto de las Redes Sociales en la Propiedad Intelectual , 2011 .

[27]  Rosa M. Carro,et al.  Predicting user personality by mining social interactions in Facebook , 2014, J. Comput. Syst. Sci..

[28]  P. Ball Why Society is a Complex Matter , 2012 .

[29]  Denis Lalanne,et al.  Surveying the complementary role of automatic data analysis and visualization in knowledge discovery , 2009, VAKD '09.

[30]  Mónica Roselli,et al.  Maduración Cerebral y Desarrollo Cognoscitivo , 2003 .

[31]  Rolf Stadler,et al.  Discovering Data Mining: From Concept to Implementation , 1997 .

[32]  Stéphane Tufféry,et al.  Data Mining and Statistics for Decision Making: Tufféry/Data Mining and Statistics for Decision Making , 2011 .

[33]  Fernando Alonso,et al.  Cooperation between expert knowledge and data mining discovered knowledge: Lessons learned , 2012, Expert Syst. Appl..

[34]  Mu-Yen Chen,et al.  Integrating data mining with case-based reasoning for chronic diseases prognosis and diagnosis , 2007, Expert Syst. Appl..

[35]  Liu Yong A knowledge discovery method based on Web information retrieval , 2013 .

[36]  Daniel A. Keim,et al.  Mastering the Information Age - Solving Problems with Visual Analytics , 2010 .

[37]  Juan C. Alvarado-Pérez,et al.  On the Spectral Clustering for Dynamic Data , 2015, IWINAC.

[38]  Djamel A. Zighed,et al.  Mining Complex Data, ECML/PKDD 2007 Third International Workshop, MCD 2007, Warsaw, Poland, September 17-21, 2007, Revised Selected Papers , 2008, MCD.

[39]  Ganesh Chandra Deka,et al.  Handbook of Research on Cloud Infrastructures for Big Data Analytics , 2014 .

[40]  Philip Ball,et al.  Why Society is a Complex Matter: Meeting Twenty-first Century Challenges with a New Kind of Science , 2012 .

[41]  Jesus Mena,et al.  Investigative Data Mining for Security and Criminal Detection , 2002 .

[42]  Yongqing Wang,et al.  Review on the Studies and Advances of Machine Learning Approaches , 2014 .

[43]  J. C. Riquelme,et al.  Minería de Datos: Conceptos y Tendencias , 2006 .

[44]  Michel Verleysen,et al.  Short Review of Dimensionality Reduction Methods Based on Stochastic Neighbour Embedding , 2014, WSOM.

[45]  John Gantz,et al.  The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East , 2012 .

[46]  Philip K. Chan,et al.  Systems for Knowledge Discovery in Databases , 1993, IEEE Trans. Knowl. Data Eng..

[47]  Michel Verleysen,et al.  Geometrical homotopy for data visualization , 2015, ESANN.

[48]  Mu-Jung Huang,et al.  Integrating fuzzy data mining and fuzzy artificial neural networks for discovering implicit knowledge , 2006, Knowl. Based Syst..

[49]  Nelson Varas-Díaz,et al.  ¿Pensabas que emocionarse era sencillo?: Las emociones como fenómenos biológicos, cognoscitivos y sociales , 2016 .

[50]  James Bailey,et al.  Advances in Knowledge Discovery and Data Mining , 2016, Lecture Notes in Computer Science.

[51]  Daniel A. Keim,et al.  Visual Analytics: Definition, Process, and Challenges , 2008, Information Visualization.

[52]  Déborah Torres Ponjuán Aproximaciones a la visualización como disciplina científica , 2009 .