A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes

In this paper, we develop a version of the bundle method to solve unconstrained difference of convex (DC) programming problems. It is assumed that a DC representation of the objective function is available. Our main idea is to utilize subgradients of both the first and second components in the DC representation. This subgradient information is gathered from some neighborhood of the current iteration point and it is used to build separately an approximation for each component in the DC representation. By combining these approximations we obtain a new nonconvex cutting plane model of the original objective function, which takes into account explicitly both the convex and the concave behavior of the objective function. We design the proximal bundle method for DC programming based on this new approach and prove the convergence of the method to an $$\varepsilon $$ε-critical point. The algorithm is tested using some academic test problems and the preliminary numerical results have shown the good performance of the new bundle method. An interesting fact is that the new algorithm finds nearly always the global solution in our test problems.

[1]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[2]  Antonio Fuduli,et al.  Minimizing Nonconvex Nonsmooth Functions via Cutting Planes and Proximity Control , 2003, SIAM J. Optim..

[3]  J. Toland On sub-differential calculus and duality in non-convex optimisation , 1979 .

[4]  Wen-yuSun,et al.  PROXIMAL POINT ALGORITHM FOR MINIMIZATION OF DC FUNCTION , 2003 .

[5]  Adil M. Bagirov,et al.  Codifferential method for minimizing nonsmooth DC functions , 2011, J. Glob. Optim..

[6]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[7]  Pierre Hansen,et al.  Solution of the Multisource Weber and Conditional Weber Problems by D.-C. Programming , 1992, Oper. Res..

[8]  V. F. Demʹi︠a︡nov,et al.  Constructive nonsmooth analysis , 1995 .

[9]  J. Hiriart-Urruty Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions , 1985 .

[10]  Krzysztof C. Kiwiel,et al.  Restricted Step and Levenberg-Marquardt Techniques in Proximal Bundle Methods for Nonconvex Nondifferentiable Optimization , 1996, SIAM J. Optim..

[11]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[12]  L. Luksan,et al.  Variable metric methods for unconstrainted optimization and nonlinear least squares , 2000 .

[13]  R. Horst,et al.  DC Programming: Overview , 1999 .

[14]  Alberto Ferrer Biosca,et al.  Representation of a Polynomial Function as a Difference of Convex Polynomials, with an Application , 2001 .

[15]  J.-B. Hiriart-Urruty,et al.  From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality , 1989 .

[16]  Le Thi Hoai An,et al.  Exact penalty and error bounds in DC programming , 2012, J. Glob. Optim..

[17]  A. Bihain Optimization of upper semidifferentiable functions , 1984 .

[18]  Adil M. Bagirov,et al.  A Method for Minimization of Quasidifferentiable Functions , 2002, Optim. Methods Softw..

[19]  Le Thi Hoai An,et al.  The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems , 2005, Ann. Oper. Res..

[20]  T. P. Dinh,et al.  Convex analysis approach to d.c. programming: Theory, Algorithm and Applications , 1997 .

[21]  P. Neittaanmäki,et al.  Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control , 1992 .

[22]  Marko Mäkelä,et al.  Survey of Bundle Methods for Nonsmooth Optimization , 2002, Optim. Methods Softw..

[23]  Jochem Zowe,et al.  A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..

[24]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[25]  Annabella Astorino,et al.  DC models for spherical separation , 2010, J. Glob. Optim..

[26]  H. Tuy Convex analysis and global optimization , 1998 .

[27]  Adil M. Bagirov,et al.  Introduction to Nonsmooth Optimization , 2014 .

[28]  Wenyu Sun,et al.  On the global convergence of a nonmonotone proximal bundle method for convex nonsmooth minimization , 2008, Optim. Methods Softw..

[29]  Antonio Fuduli,et al.  A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization , 2004, Optim. Methods Softw..

[30]  Krzysztof C. Kiwiel,et al.  An aggregate subgradient method for nonsmooth convex minimization , 1983, Math. Program..

[31]  Adil M. Bagirov,et al.  A quasisecant method for minimizing nonsmooth functions , 2010, Optim. Methods Softw..

[32]  Adil M. Bagirov,et al.  Introduction to Nonsmooth Optimization: Theory, Practice and Software , 2014 .

[33]  Alberto Ferrer,et al.  Improving the efficiency of DC global optimization methods by improving the DC representation of the objective function , 2009, J. Glob. Optim..

[34]  Adil M. Bagirov,et al.  A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems , 2006, Eur. J. Oper. Res..

[35]  Kaj Holmberg,et al.  A production-transportation problem with stochastic demand and concave production costs , 1999, Math. Program..

[36]  E. A. Nurminski,et al.  A splitting bundle approach for non-smooth non-convex minimization , 2015 .

[37]  Ladislav Luksan,et al.  Dual method for solving a special problem of quadratic programming as a subproblem at linearly constrained nonlinear minimax approximation , 1984, Kybernetika.

[38]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[39]  Annabella Astorino,et al.  Margin maximization in spherical separation , 2012, Computational Optimization and Applications.

[40]  P. Hartman On functions representable as a difference of convex functions , 1959 .

[41]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  Le Thi Hoai An,et al.  Solving a Class of Linearly Constrained Indefinite Quadratic Problems by D.C. Algorithms , 1997, J. Glob. Optim..

[44]  K. Kiwiel Methods of Descent for Nondifferentiable Optimization , 1985 .