Differential Control of the Releasable Vesicle Pools by SNAP-25 Splice Variants and SNAP-23

[1]  T. Südhof,et al.  Sr2+ Binding to the Ca2+ Binding Site of the Synaptotagmin 1 C2B Domain Triggers Fast Exocytosis without Stimulating SNARE Interactions , 2003, Neuron.

[2]  E. Neher,et al.  Protein Kinase C-Dependent Phosphorylation of Synaptosome-Associated Protein of 25 kDa at Ser187 Potentiates Vesicle Recruitment , 2002, The Journal of Neuroscience.

[3]  Thomas C. Südhof,et al.  Snares and munc18 in synaptic vesicle fusion , 2002, Nature Reviews Neuroscience.

[4]  I. Robinson,et al.  The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo , 2002, Nature.

[5]  J. Witkin,et al.  SNAP‐25 and Synaptotagmin 1 Function in Ca2+‐Dependent Reversible Docking of Granules to the Plasma Membrane , 2002, Traffic.

[6]  Xiaodong Zhang,et al.  Ca2+-Dependent Synaptotagmin Binding to SNAP-25 Is Essential for Ca2+-Triggered Exocytosis , 2002, Neuron.

[7]  M. Criado,et al.  Modifications in the C Terminus of the Synaptosome-associated Protein of 25 kDa (SNAP-25) and in the Complementary Region of Synaptobrevin Affect the Final Steps of Exocytosis* , 2002, The Journal of Biological Chemistry.

[8]  E. Neher,et al.  The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  L. Donald Partridge,et al.  Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis , 2002, Nature Neuroscience.

[10]  T. Südhof,et al.  SNARE Function Analyzed in Synaptobrevin/VAMP Knockout Mice , 2001, Science.

[11]  R. Scheller,et al.  Fusion Without SNAREs? , 2001, Science.

[12]  M. Jackson,et al.  Synaptotagmin Modulation of Fusion Pore Kinetics in Regulated Exocytosis of Dense-Core Vesicles , 2001, Science.

[13]  T. Südhof,et al.  Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Thomas C. Südhof,et al.  Munc18-1 Promotes Large Dense-Core Vesicle Docking , 2001, Neuron.

[15]  H. Sarkar,et al.  Differential roles of developmentally distinct SNAP-25 isoforms in the neurotransmitter release process. , 2001, Biochemistry.

[16]  NGF enhances depolarization effects on SNAP-25 expression: induction of SNAP-25b isoform , 2001, Neuroreport.

[17]  Richard H. Scheller,et al.  SNARE-mediated membrane fusion , 2001, Nature Reviews Molecular Cell Biology.

[18]  T. Voets Dissection of Three Ca2+-Dependent Steps Leading to Secretion in Chromaffin Cells from Mouse Adrenal Slices , 2000, Neuron.

[19]  E. Neher,et al.  Munc13‐1 acts as a priming factor for large dense‐core vesicles in bovine chromaffin cells , 2000, The EMBO journal.

[20]  E. Pothos,et al.  Quantitative and Statistical Analysis of the Shape of Amperometric Spikes Recorded from Two Populations of Cells , 2000, Journal of neurochemistry.

[21]  Thomas Voets,et al.  Mechanisms Underlying Phasic and Sustained Secretion in Chromaffin Cells from Mouse Adrenal Slices , 1999, Neuron.

[22]  P. Roche,et al.  SNAP-23 and SNAP-25 are palmitoylated in vivo. , 1999, Biochemical and biophysical research communications.

[23]  P. Halban,et al.  SNAP-25a and -25b isoforms are both expressed in insulin-secreting cells and can function in insulin secretion. , 1999, The Biochemical journal.

[24]  J. Witkin,et al.  Role of the Cysteine-rich Domain of the t-SNARE Component, SYNDET, in Membrane Binding and Subcellular Localization* , 1999, The Journal of Biological Chemistry.

[25]  R. Scheller,et al.  SNARE Interactions Are Not Selective , 1999, The Journal of Biological Chemistry.

[26]  D. Aunis,et al.  Differential Expression of SNAP‐25 Isoforms and SNAP‐23 in the Adrenal Gland , 1999, Journal of neurochemistry.

[27]  T. Südhof,et al.  Membrane fusion and exocytosis. , 1999, Annual review of biochemistry.

[28]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[29]  E. Neher,et al.  Cytosolic Ca2+ Acts by Two Separate Pathways to Modulate the Supply of Release-Competent Vesicles in Chromaffin Cells , 1998, Neuron.

[30]  R. Burgess,et al.  Distinct Requirements for Evoked and Spontaneous Release of Neurotransmitter Are Revealed by Mutations in theDrosophila Gene neuronal-synaptobrevin , 1998, The Journal of Neuroscience.

[31]  Reinhard Jahn,et al.  Structure and Conformational Changes in NSF and Its Membrane Receptor Complexes Visualized by Quick-Freeze/Deep-Etch Electron Microscopy , 1997, Cell.

[32]  P. Scherer,et al.  Syndet is a novel SNAP-25 related protein expressed in many tissues. , 1997, Journal of cell science.

[33]  R. Chow,et al.  A simple method for insulating carbon-fiber microelectrodes using anodic electrophoretic deposition of paint. , 1996, Analytical chemistry.

[34]  P. Roche,et al.  Identification of a Novel Syntaxin- and Synaptobrevin/VAMP-binding Protein, SNAP-23, Expressed in Non-neuronal Tissues* , 1996, The Journal of Biological Chemistry.

[35]  H. Horstmann,et al.  Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells , 1995, Neuron.

[36]  K M Hahn,et al.  Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neural development. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[38]  Wilson Mc,et al.  Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25 , 1994 .

[39]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[40]  Robert H. Chow,et al.  Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells , 1992, Nature.

[41]  F. Dodge,et al.  Co‐operative action of calcium ions in transmitter release at the neuromuscular junction , 1967, The Journal of physiology.