Analysis of the Xedni Calculus Attack
暂无分享,去创建一个
Andreas Stein | Michael J. Jacobson | Joseph H. Silverman | Neal Koblitz | Edlyn Teske | N. Koblitz | J. Silverman | A. Stein | M. Jacobson | Edlyn Teske
[1] Neal Koblitz,et al. Algebraic aspects of cryptography , 1998, Algorithms and computation in mathematics.
[2] Karl Rubin,et al. Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer , 1981 .
[3] René Schoof,et al. Nonsingular plane cubic curves over finite fields , 1987, J. Comb. Theory A.
[4] J. Cassels,et al. Diophantine Equations with Special Reference To Elliptic Curves , 1966 .
[5] A. Neron,et al. Quasi-fonctions et Hauteurs sur les Varietes Abeliennes , 1965 .
[6] Joseph H. Silverman,et al. The Xedni Calculus and the Elliptic Curve Discrete Logarithm Problem , 2000, Des. Codes Cryptogr..
[7] Joseph H. Silverman,et al. Computing heights on elliptic curves , 1988 .
[8] Victor S. Miller,et al. Use of Elliptic Curves in Cryptography , 1985, CRYPTO.
[9] J. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves , 1994 .
[10] L. G. Lidia,et al. A library for computational number theory , 1997 .
[11] Alfred Menezes,et al. Handbook of Applied Cryptography , 2018 .
[12] Johannes Buchmann,et al. LiDIA : a library for computational number theory , 1995 .
[13] N. Koblitz. Elliptic curve cryptosystems , 1987 .
[14] A. Wiles,et al. The Birch and Swinnerton-Dyer Conjecture , 2000 .
[15] Alfred Menezes,et al. Elliptic curve public key cryptosystems , 1993, The Kluwer international series in engineering and computer science.
[16] Jean-François Mestre,et al. Formules explicites et minoration de conducteurs de vari'et'es alg'ebriques , 1986 .
[17] Barry Mazur,et al. Modular curves and the eisenstein ideal , 1977 .
[18] Joseph H. Silverman,et al. Computing canonical heights with little (or no) factorization , 1997, Math. Comput..
[19] S. Lang,et al. Elliptic Curves: Diophantine Analysis , 1978 .
[20] Joseph H. Silverman,et al. Lower bound for the canonical height on elliptic curves , 1981 .
[21] Joseph H. Silverman,et al. The canonical height and integral points on elliptic curves , 1988 .
[22] Joseph H. Silverman,et al. Divisibility of the Specialization Map for Families of Elliptic Curves , 1985 .
[23] George Havas,et al. Extended GCD and Hermite Normal Form Algorithms via Lattice Basis Reduction , 1998, Exp. Math..
[24] A. Wiles,et al. Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .
[25] D. W. Masser. Specializations of finitely generated subgroups of abelian varieties , 1989 .
[26] Kenneth A. Ribet,et al. On modular representations of $$(\bar Q/Q)$$ arising from modular forms , 1990 .
[27] André Néron,et al. Problèmes arithmétique et géométriques rattachés à la notion de rang d'une courbe algébrique dans un corps , 1952 .
[28] Joe Suzuki,et al. Elliptic Curve Discrete Logarithms and the Index Calculus , 1998, ASIACRYPT.
[29] H. Swinnerton-Dyer,et al. Ellitpic curves and modular functions , 1975 .
[30] G. de B. Robinson,et al. Modular Representations of Sn , 1964, Canadian Journal of Mathematics.
[31] A. Wiles. Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .