Modelling of laser beam heat source based on experimental research of Yb:YAG laser power distribution

Abstract This paper concerns the modelling of laser beam heat source based on experimental research of Yb:YAG laser. Measurements of the real laser beam power emitted by Trumpf laser head D70 are performed using UFF100 analyser. Developed heat source interpolation model is based on the geostatistical Kriging method. Comparison of experimentally determined Yb:YAG laser power intensity distribution with analytical models and interpolated distribution is carried out in order to determine the accuracy of mapping of the real laser beam heat source distribution. Finally, numerical simulation of laser heating process is performed in finite element method to evaluate the usefulness of presented solutions.

[1]  Piotr Lacki,et al.  Numerical simulation of the electron beam welding process , 2011 .

[2]  Frank W. Liou,et al.  Numerical investigation of the influence of laser beam mode on melt pool , 2004 .

[3]  Wiesława Piekarska,et al.  Theoretical investigations into heat transfer in laser-welded steel sheets , 2012, Journal of Thermal Analysis and Calorimetry.

[4]  B. Yilbas Laser heating process and experimental validation , 1997 .

[5]  B. Neuenschwander,et al.  Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods , 1998 .

[6]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[8]  R. Webster,et al.  Kriging: a method of interpolation for geographical information systems , 1990, Int. J. Geogr. Inf. Sci..

[9]  David J. Richardson,et al.  High power fiber lasers: current status and future perspectives [Invited] , 2010 .

[10]  Xiangzhong Jin,et al.  A heat transfer model for deep penetration laser welding based on an actual keyhole , 2003 .

[11]  W. Piekarska,et al.  Modeling of thermal phenomena in single laser beam and laser-arc hybrid welding processes using projection method , 2013 .

[12]  Jianguo Wen,et al.  Influences of pump beam distribution on thermal lensing spherical aberration in an LD end-pumped Nd:YAG laser , 2009 .

[13]  T. Fan Heat generation in Nd:YAG and Yb:YAG , 1993 .

[14]  J. Z. Zhu,et al.  The finite element method , 1977 .

[15]  P. Maropoulos,et al.  Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding , 2005 .

[16]  Heinz P. Weber,et al.  Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods , 1994 .

[17]  Danut Iordachescu,et al.  Laser Welding of Structural Aluminium , 2010 .

[18]  M. Zako,et al.  Structural optimization using Kriging approximation , 2003 .

[19]  S. Na,et al.  A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro-joining ☆ , 2002 .

[20]  W. Piekarska,et al.  Numerical Modelling of Thermal and Structural Strain in Laser Welding Process , 2012 .

[21]  W. Xie,et al.  Influence of the thermal effect on the TEM00 mode output power of a laser-diode side-pumped solid-state laser. , 2000, Applied optics.

[22]  Piotr Lacki,et al.  Modeling of Heat Source Based on Parameters of Electron Beam Welding Process , 2011 .

[23]  John Ion,et al.  Laser processing of engineering materials , 2002 .

[24]  R. Poprawe,et al.  High power diode lasers : technology and applications , 2007 .