Flexible, highly efficient all-polymer solar cells

All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

[1]  Souheng Wu Chain entanglement and melt viscosity of compatible polymer blends: poly(methyl methacrylate) and poly(styrene-acrylonitrile) , 1987 .

[2]  J. Comyn,et al.  Contact angles and adhesive bonding , 1992 .

[3]  R. Landel,et al.  Mechanical Properties of Polymers and Composites , 1993 .

[4]  Richard A. L. Jones,et al.  Polymers at Surfaces and Interfaces , 1999 .

[5]  T. Cosgrove Polymers at surfaces and interfaces R.A.L. Jones, R.W. Richards; Cambridge University Press, Cambridge, ISBN 0 521 47965 7 Paperback , 2001 .

[6]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[7]  D. Bradley,et al.  Organic Photovoltaic Devices Based on Blends of Regioregular Poly(3-hexylthiophene) and Poly(9,9-dioctylfluorene-co-benzothiadiazole) , 2004 .

[8]  Sabu Thomas,et al.  Micro- and Nanostructured Multiphase Polymer Blend Systems : Phase Morphology and Interfaces , 2005 .

[9]  Heh Han Meijer,et al.  Mechanical performance of polymer systems: The relation between structure and properties , 2005 .

[10]  Souheng Wu,et al.  Calculation of interfacial tension in polymer systems , 2007 .

[11]  Jean M. J. Fréchet,et al.  Polymer—Fullerene Composite Solar Cells. , 2008 .

[12]  Vishal Shrotriya,et al.  Organic photovoltaics: Polymer power , 2009 .

[13]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[14]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[15]  A. Facchetti,et al.  Bulk Electron Transport and Charge Injection in a High Mobility n‐Type Semiconducting Polymer , 2010, Advanced materials.

[16]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[17]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[18]  J. Anthony Small-Molecule, Nonfullerene Acceptors for Polymer Bulk Heterojunction Organic Photovoltaics† , 2011 .

[19]  H. Sirringhaus,et al.  Polymer Blend Solar Cells Based on a High‐Mobility Naphthalenediimide‐Based Polymer Acceptor: Device Physics, Photophysics and Morphology , 2011 .

[20]  Kazuhito Hashimoto,et al.  All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. , 2011, Angewandte Chemie.

[21]  Bumjoon J. Kim,et al.  Effects of Solubilizing Group Modification in Fullerene Bis-Adducts on Normal and Inverted Type Polymer Solar Cells , 2012 .

[22]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[23]  R. Dauskardt,et al.  Cohesion and device reliability in organic bulk heterojunction photovoltaic cells , 2012 .

[24]  S. Jenekhe,et al.  n-Type Naphthalene Diimide–Biselenophene Copolymer for All-Polymer Bulk Heterojunction Solar Cells , 2012 .

[25]  Zhenan Bao,et al.  Toward mechanically robust and intrinsically stretchable organic solar cells: Evolution of photovoltaic properties with tensile strain , 2012 .

[26]  John R. Tumbleston,et al.  The Importance of Fullerene Percolation in the Mixed Regions of Polymer–Fullerene Bulk Heterojunction Solar Cells , 2013 .

[27]  Bethany I Lemanski,et al.  Correlating Stiffness, Ductility, and Morphology of Polymer:Fullerene Films for Solar Cell Applications , 2013 .

[28]  Samson A Jenekhe,et al.  All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor. , 2013, Journal of the American Chemical Society.

[29]  Kazuhito Hashimoto,et al.  Control of Miscibility and Aggregation Via the Material Design and Coating Process for High‐Performance Polymer Blend Solar Cells , 2013, Advanced materials.

[30]  Takao Someya,et al.  Ultrathin, highly flexible and stretchable PLEDs , 2013, Nature Photonics.

[31]  Antonio Facchetti,et al.  Polymer donor–polymer acceptor (all-polymer) solar cells , 2013 .

[32]  Youyong Li,et al.  Efficient Polymer Solar Cells with a High Open Circuit Voltage of 1 Volt , 2013 .

[33]  Changduk Yang,et al.  Naphthalene Diimide Incorporated Thiophene-Free Copolymers with Acene and Heteroacene Units: Comparison of Geometric Features and Electron-Donating Strength of Co-units , 2013 .

[34]  Taek‐Soo Kim,et al.  Tensile testing of ultra-thin films on water surface , 2013, Nature Communications.

[35]  John R. Tumbleston,et al.  Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC71BM Solar Cells , 2013 .

[36]  Christopher Bruner,et al.  Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices , 2013 .

[37]  Yana Vaynzof,et al.  Suppressing Recombination in Polymer Photovoltaic Devices via Energy‐Level Cascades , 2013, Advanced materials.

[38]  Chang Su Kim,et al.  Highly Bendable Large-Area Printed Bulk Heterojunction Film Prepared by the Self-Seeded Growth of Poly(3-hexylthiophene) Nanofibrils , 2013 .

[39]  Bumjoon J. Kim,et al.  Importance of Optimal Composition in Random Terpolymer-Based Polymer Solar Cells , 2013 .

[40]  Zhihua Chen,et al.  Tuning the morphology of all-polymer OPVS through altering polymer-solvent interactions , 2014 .

[41]  Satyaprasad P. Senanayak,et al.  Improved Performance of Solution-Processed n-Type Organic Field-Effect Transistors by Regulating the Intermolecular Interactions and Crystalline Domains on Macroscopic Scale , 2014 .

[42]  Eric T. Hoke,et al.  Ring Substituents Mediate the Morphology of PBDTTPD-PCBM Bulk-Heterojunction Solar Cells , 2014 .

[43]  B. Collins,et al.  The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer. , 2014, Journal of the American Chemical Society.

[44]  P. Liu,et al.  High‐Efficiency All‐Polymer Solar Cells Based on a Pair of Crystalline Low‐Bandgap Polymers , 2014, Advanced materials.

[45]  R. Dauskardt,et al.  Controlling Interdiffusion, Interfacial Composition, and Adhesion in Polymer Solar Cells , 2014 .

[46]  M. Sommer Conjugated polymers based on naphthalene diimide for organic electronics , 2014 .

[47]  Daisuke Mori,et al.  Low‐Bandgap Donor/Acceptor Polymer Blend Solar Cells with Efficiency Exceeding 4% , 2014 .

[48]  Timothy O'Connor,et al.  Stretching and conformal bonding of organic solar cells to hemispherical surfaces , 2014 .

[49]  Long Ye,et al.  Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45% , 2014 .

[50]  J. Behrends,et al.  Correlated Donor/Acceptor Crystal Orientation Controls Photocurrent Generation in All‐Polymer Solar Cells , 2014 .

[51]  Alberto Salleo,et al.  High Performance All‐Polymer Solar Cell via Polymer Side‐Chain Engineering , 2014, Advanced materials.

[52]  Christopher M. Proctor,et al.  Competitive Absorption and Inefficient Exciton Harvesting: Lessons Learned from Bulk Heterojunction Organic Photovoltaics Utilizing the Polymer Acceptor P(NDI2OD‐T2) , 2014 .

[53]  S. Jenekhe,et al.  All‐Polymer Bulk Heterojuction Solar Cells with 4.8% Efficiency Achieved by Solution Processing from a Co‐Solvent , 2014, Advanced materials.

[54]  Daniel J. Burke,et al.  Mechanical Properties of Conjugated Polymers and Polymer‐Fullerene Composites as a Function of Molecular Structure , 2014 .

[55]  Luping Yu,et al.  Synthesis and Search for Design Principles of New Electron Accepting Polymers for All-Polymer Solar Cells , 2014 .

[56]  Bumjoon J. Kim,et al.  High-Performance All-Polymer Solar Cells Based on Face-On Stacked Polymer Blends with Low Interfacial Tension. , 2014, ACS macro letters.

[57]  Timothy O'Connor,et al.  Molecularly Stretchable Electronics , 2014 .

[58]  Won Bo Lee,et al.  Architectural engineering of rod-coil compatibilizers for producing mechanically and thermally stable polymer solar cells. , 2014, ACS nano.

[59]  Weiwei Li,et al.  Polymer Solar Cells with Diketopyrrolopyrrole Conjugated Polymers as the Electron Donor and Electron Acceptor , 2014, Advanced materials.

[60]  Darren J. Lipomi,et al.  Best of Both Worlds: Conjugated Polymers Exhibiting Good Photovoltaic Behavior and High Tensile Elasticity , 2014 .

[61]  Daisuke Mori,et al.  Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7% , 2014 .

[62]  Eric J. Sawyer,et al.  Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants , 2015 .

[63]  Feng Liu,et al.  Fluoro‐Substituted n‐Type Conjugated Polymers for Additive‐Free All‐Polymer Bulk Heterojunction Solar Cells with High Power Conversion Efficiency of 6.71% , 2015, Advanced materials.

[64]  Bumjoon J. Kim,et al.  Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation. , 2015, Journal of the American Chemical Society.

[65]  S. Jenekhe,et al.  n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells. , 2015, Journal of the American Chemical Society.

[66]  M. Jo,et al.  Lateral Organic Solar Cells with Self‐Assembled Semiconductor Nanowires , 2015 .

[67]  이원호,et al.  High Performance All-Polymer Solar Cells via Side Chain Engineering of Polymer Acceptor , 2015 .

[68]  Bumjoon J. Kim,et al.  High‐Performance All‐Polymer Solar Cells Via Side‐Chain Engineering of the Polymer Acceptor: The Importance of the Polymer Packing Structure and the Nanoscale Blend Morphology , 2015, Advanced materials.