Analysis and application of a lower envelope method for sharp-interface multiphase problems

We introduce and analyze a lower envelope method (LEM) for the tracking of interfaces motion in multiphase problems. The main idea of the method is to define the phases as the regions where the lower envelope of a set of functions coincides with exactly one of the functions. We show that a variety of complex lower-dimensional interfaces naturally appear in the process. The phases evolution is then achieved by solving a set of transport equations. In the first part of the paper, we show several theoretical properties, give conditions to obtain a well-posed behaviour, and show that the level set method is a particular case of the LEM. In the second part, we propose a LEM-based numerical algorithm for multiphase shape optimization problems. We apply this algorithm to an inverse conductivity problem with three phases and present several numerical results. Mathematics Subject Classification. 49Q10, 35Q93, 35R30, 35R05

[1]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[2]  K. Saitou,et al.  Multi-material topology optimization using ordered SIMP interpolation , 2016, Structural and Multidisciplinary Optimization.

[3]  L. Qi Transposes, L-Eigenvalues and Invariants of Third Order Tensors , 2017, 1704.01327.

[4]  Rouhollah Tavakoli,et al.  Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation , 2014 .

[5]  Jimmy Lamboley,et al.  Structure of shape derivatives around irregular domains and applications , 2006 .

[6]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[7]  D. Chopp,et al.  A projection method for motion of triple junctions by level sets , 2002 .

[8]  R. Hiptmair,et al.  Comparison of approximate shape gradients , 2014, BIT Numerical Mathematics.

[9]  Harald Garcke,et al.  On sharp interface limits of Allen--Cahn/Cahn--Hilliard variational inequalities , 2007 .

[10]  J. Sethian,et al.  Multiscale Modeling of Membrane Rearrangement, Drainage, and Rupture in Evolving Foams , 2013, Science.

[11]  G. Allaire,et al.  MULTI-PHASE STRUCTURAL OPTIMIZATION VIA A LEVEL SET METHOD ∗, ∗∗ , 2014 .

[12]  M. Delfour,et al.  An optimal triangulation for second-order elliptic problems☆ , 1985 .

[13]  Michael Hintermüller,et al.  Multiphase Image Segmentation and Modulation Recovery Based on Shape and Topological Sensitivity , 2009, Journal of Mathematical Imaging and Vision.

[14]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[15]  Xuecheng Tai,et al.  Piecewise Constant Level Set Methods for Multiphase Motion , 2005 .

[16]  M. D. Hoop,et al.  EIT in a layered anisotropic medium , 2017, 1712.06138.

[17]  Harald Garcke,et al.  A multi-phase Mullins–Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[18]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[19]  Elena Beretta,et al.  Differentiability of the Dirichlet to Neumann Map Under Movements of Polygonal Inclusions with an Application to Shape Optimization , 2016, SIAM J. Math. Anal..

[20]  Simona Perotto,et al.  Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in EIT , 2017, J. Comput. Phys..

[21]  T. Chan,et al.  Multiple level set methods with applications for identifying piecewise constant functions , 2004 .

[22]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[23]  J. Sethian,et al.  The Voronoi Implicit Interface Method for computing multiphase physics , 2011, Proceedings of the National Academy of Sciences.

[24]  Harald Garcke,et al.  A MultiPhase Field Concept: Numerical Simulations of Moving Phase Boundaries and Multiple Junctions , 1999, SIAM J. Appl. Math..

[25]  K. Sturm A structure theorem for shape functions defined on submanifolds , 2016, 1604.04840.

[26]  K. Sturm,et al.  Distributed shape derivative via averaged adjoint method and applications , 2015, 1509.01816.

[27]  Dong Liu,et al.  A Parametric Level set Method for Imaging Multiphase Conductivity Using Electrical Impedance Tomography , 2018, IEEE Transactions on Computational Imaging.

[28]  M. Hintermüller,et al.  Electrical Impedance Tomography: from topology to shape , 2008 .

[29]  Antoine Laurain,et al.  Stability Analysis of the Reconstruction Step of the Voronoi Implicit Interface Method , 2017, SIAM J. Numer. Anal..

[30]  Constance de Koning,et al.  Editors , 2003, Annals of Emergency Medicine.

[31]  S. Osher,et al.  A multiple level set method for modeling grain boundary evolution of polycrystalline materials , 2008 .

[32]  Xiao Wang,et al.  Topology optimization of multi-material negative Poisson's ratio metamaterials using a reconciled level set method , 2017, Comput. Aided Des..

[33]  Matthew MacDonald,et al.  Shapes and Geometries , 1987 .

[34]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[35]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[36]  Dong Liu,et al.  Multi-phase flow monitoring with electrical impedance tomography using level set based method , 2015 .

[37]  A. Laurain Distributed and boundary expressions of first and second order shape derivatives in nonsmooth domains , 2020 .

[38]  L. Bronsard,et al.  A numerical method for tracking curve networks moving with curvature motion , 1995 .

[39]  Z. Kang,et al.  A multi-material level set-based topology and shape optimization method , 2015 .

[40]  Tushar Kanti Bera,et al.  Applications of Electrical Impedance Tomography (EIT): A Short Review , 2018 .

[41]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[42]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[43]  Ronald Fedkiw,et al.  A review of level-set methods and some recent applications , 2018, J. Comput. Phys..

[44]  Michael Hintermüller,et al.  Second-order topological expansion for electrical impedance tomography , 2011, Advances in Computational Mathematics.

[45]  Wing Kam Liu,et al.  A level set approach for optimal design of smart energy harvesters , 2010 .

[46]  Mei Yulin,et al.  A level set method for structural topology optimization with multi-constraints and multi-materials , 2004 .

[47]  Xiaoming Wang,et al.  Color level sets: a multi-phase method for structural topology optimization with multiple materials , 2004 .

[48]  Kevin Sturm Minimax Lagrangian Approach to the Differentiability of Nonlinear PDE Constrained Shape Functions Without Saddle Point Assumption , 2015, SIAM J. Control. Optim..