Role of Renin-Angiotensin System Components in Atherosclerosis: Focus on Ang-II, ACE2, and Ang-1–7

Atherosclerosis is the leading cause of vascular disease worldwide and contributes significantly to deaths from cardiovascular complications. There is a remarkably close relationship between atherosclerotic plaque formation and the activation of renin-angiotensin system (RAS). However, depending on which RAS pathway is activated, pro‐ or anti-atherogenic outcomes may be observed. This brief review focuses on the role of three of the most important pieces of RAS axis, angiotensin II (Ang-II), angiotensin converting enzyme type 2 (ACE2), and angiotensin 1–7 (Ang-1–7) and their involvement in atherosclerosis. We focused on the effects of these molecules on vascular function and inflammation, which are important determinants of atherogenesis. Furthermore, we highlighted potential pharmacological approaches to treat this disorder.

[1]  M. Sanz,et al.  Angiotensin II and leukocyte trafficking: New insights for an old vascular mediator. Role of redox-signaling pathways. , 2020, Free radical biology & medicine.

[2]  C. Kupatt,et al.  Atherosclerosis and the Capillary Network; Pathophysiology and Potential Therapeutic Strategies , 2019, Cells.

[3]  V. Apostolopoulos,et al.  The potential actions of angiotensin‐converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases , 2020, Clinical and experimental pharmacology & physiology.

[4]  A. Danser,et al.  The renin angiotensin aldosterone system and its therapeutic targets. , 2019, Experimental eye research.

[5]  Sergio Lavandero,et al.  Counter-regulatory renin–angiotensin system in cardiovascular disease , 2019, Nature Reviews Cardiology.

[6]  Huimin Yu,et al.  Relationship between circulating levels of angiotensin-converting enzyme 2-angiotensin-(1–7)-MAS axis and coronary heart disease , 2019, Heart and Vessels.

[7]  Juan Zhou,et al.  The role of monocyte chemotactic protein-induced protein 1 (MCPIP1) in angiotensin II-induced macrophage apoptosis and vulnerable plaque formation. , 2019, Biochemical and biophysical research communications.

[8]  R. Touyz,et al.  NOX5: Molecular biology and pathophysiology , 2019, Experimental physiology.

[9]  J. Mehta,et al.  Role of Ox-LDL and LOX-1 in Atherogenesis. , 2019, Current medicinal chemistry.

[10]  P. Libby,et al.  Reassessing the Mechanisms of Acute Coronary Syndromes: The “Vulnerable Plaque” and Superficial Erosion , 2019, Circulation research.

[11]  M. Bouvier,et al.  Ang-(1-7) is an endogenous β-arrestin-biased agonist of the AT1 receptor with protective action in cardiac hypertrophy , 2017, Scientific Reports.

[12]  T. Deneva,et al.  Pathophysiological Role of Adiponectin, Leptin and Asymmetric Dimethylarginine in the Process of Atherosclerosis , 2016, Folia medica.

[13]  S. Mojal,et al.  Circulating angiotensin converting enzyme 2 activity as a biomarker of silent atherosclerosis in patients with chronic kidney disease. , 2016, Atherosclerosis.

[14]  V. Apostolopoulos,et al.  Angiotensin (1-7) and Alamandine: Similarities and differences. , 2016, Pharmacological research.

[15]  B. Trojanowicz,et al.  Monocytic angiotensin-converting enzyme 2 relates to atherosclerosis in patients with chronic kidney disease , 2016, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[16]  V. Lubrano,et al.  Roles of LOX-1 in microvascular dysfunction. , 2016, Microvascular research.

[17]  Dean P. Jones,et al.  Effect of Angiotensin II Type I Receptor Blockade with Valsartan on Carotid Artery Atherosclerosis: A Double Blind Randomized Clinical Trial Comparing Valsartan and Placebo (EFFERVESCENT). , 2016, American heart journal.

[18]  H. Diao,et al.  Pathophysiological role of osteopontin and angiotensin II in atherosclerosis. , 2016, Biochemical and biophysical research communications.

[19]  B. Lacey,et al.  Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. , 2016, Circulation research.

[20]  M. Raizada,et al.  Anti-hypertensive Effects of Diminazene Aceturate: An Angiotensin- Converting Enzyme 2 Activator in Rats. , 2015, Protein and peptide letters.

[21]  K. Jandeleit-Dahm,et al.  The role of NADPH oxidase in vascular disease--hypertension, atherosclerosis & stroke. , 2015, Current pharmaceutical design.

[22]  J. Cruz,et al.  Adipokines, diabetes and atherosclerosis: an inflammatory association , 2015, Front. Physiol..

[23]  Sufang Li,et al.  Angiotensin-(1-7): new perspectives in atherosclerosis treatment , 2015, Journal of geriatric cardiology : JGC.

[24]  N. Stergiopulos,et al.  Diminazene enhances stability of atherosclerotic plaques in ApoE-deficient mice. , 2015, Vascular pharmacology.

[25]  L. Ferder,et al.  Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. , 2015, World journal of biological chemistry.

[26]  J. Guan,et al.  Comparison of angiotensin-(1-7), losartan and their combination on atherosclerotic plaque formation in apolipoprotein E knockout mice. , 2015, Atherosclerosis.

[27]  Bo Dong,et al.  ACE2 activity was increased in atherosclerotic plaque by losartan: Possible relation to anti-atherosclerosis , 2015, Journal of the renin-angiotensin-aldosterone system : JRAAS.

[28]  C. Zhang,et al.  Endogenous activated angiotensin-(1-7) plays a protective effect against atherosclerotic plaques unstability in high fat diet fed ApoE knockout mice. , 2015, International journal of cardiology.

[29]  R. Bai,et al.  Angiotensin-(1-7) Attenuates Angiotensin II-Induced ICAM-1, VCAM-1, and MCP-1 Expression via the MAS Receptor Through Suppression of P38 and NF-κB Pathways in HUVECs , 2015, Cellular Physiology and Biochemistry.

[30]  A. Ferreira,et al.  Angiotensin converting enzyme 2 activator (DIZE) modulates metabolic profiles in mice, decreasing lipogenesis. , 2015, Protein and peptide letters.

[31]  EscuderoPaula,et al.  Combined sub-optimal doses of rosuvastatin and bexarotene impair angiotensin II-induced arterial mononuclear cell adhesion through inhibition of Nox5 signaling pathways and increased RXR/PPARα and RXR/PPARγ interactions. , 2015 .

[32]  Tahsin F. Kellici,et al.  Rational Drug Design and Synthesis of Molecules Targeting the Angiotensin II Type 1 and Type 2 Receptors , 2015, Molecules.

[33]  Bo Dong,et al.  ACE2 and Ang-(1–7) protect endothelial cell function and prevent early atherosclerosis by inhibiting inflammatory response , 2015, Inflammation Research.

[34]  Gaurang C. Patel,et al.  Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: role of epigenetic histone modifications. , 2015, Biochemical pharmacology.

[35]  A. Hallberg,et al.  Angiotensin type 2 receptor (AT2R) and receptor Mas: a complex liaison. , 2015, Clinical science.

[36]  T. Psaltopoulou,et al.  Oxidative Stress and Early Atherosclerosis: Novel Antioxidant Treatment , 2015, Cardiovascular Drugs and Therapy.

[37]  A. Daugherty,et al.  Angiotensin-Converting Enzyme 2 Decreases Formation and Severity of Angiotensin II–Induced Abdominal Aortic Aneurysms , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[38]  R. Olszanecki,et al.  Influence of atorvastatin on angiotensin I metabolism in resting and TNF-α -activated rat vascular smooth muscle cells , 2014, Journal of the renin-angiotensin-aldosterone system : JRAAS.

[39]  W. Kirch,et al.  Statin Treatment in Hypercholesterolemic Men Does Not Attenuate Angiotensin II-Induced Venoconstriction , 2014, PloS one.

[40]  L. Ferder,et al.  Adiponectin expression and the cardioprotective role of the vitamin D receptor activator paricalcitol and the angiotensin converting enzyme inhibitor enalapril in ApoE-deficient mice , 2014, Therapeutic advances in cardiovascular disease.

[41]  C. A. McKinney,et al.  Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and vascular remodelling. , 2014, Clinical science.

[42]  R. Santos Angiotensin-(1-7). , 2014, Hypertension.

[43]  M. Sanz Angiotensin II and leukocyte trafficking: New insights for an old vascular mediator , 2014 .

[44]  C. Zhang,et al.  Angiotensin-converting enzyme 2 and angiotensin 1–7: novel therapeutic targets , 2014, Nature Reviews Cardiology.

[45]  R. Touyz,et al.  Angiotensin II and Vascular Injury , 2014, Current Hypertension Reports.

[46]  R. Nagai,et al.  Deletion of angiotensin-converting enzyme 2 promotes the development of atherosclerosis and arterial neointima formation. , 2014, Cardiovascular research.

[47]  C. Niemann,et al.  Patients with chronic kidney disease. , 2013, The Medical clinics of North America.

[48]  C. Zhang,et al.  Angiotensin-(1–7) Dose-Dependently Inhibits Atherosclerotic Lesion Formation and Enhances Plaque Stability by Targeting Vascular Cells , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[49]  J. Mocco,et al.  Diminazene attenuates pulmonary hypertension and improves angiogenic progenitor cell functions in experimental models. , 2013, American journal of respiratory and critical care medicine.

[50]  Hong Chen,et al.  Angiotensin-(1-7) regulates Angiotensin II-induced VCAM-1 expression on vascular endothelial cells. , 2013, Biochemical and biophysical research communications.

[51]  J. Totoń-Żurańska,et al.  The effect of AVE 0991, nebivolol and doxycycline on inflammatory mediators in an apoE-knockout mouse model of atherosclerosis , 2012, Medical science monitor : international medical journal of experimental and clinical research.

[52]  U. Förstermann,et al.  Nitric oxide synthases: regulation and function. , 2012, European heart journal.

[53]  A. Durante,et al.  Role of the renin-angiotensin-aldosterone system in the pathogenesis of atherosclerosis. , 2012, Current pharmaceutical design.

[54]  J. Totoń-Żurańska,et al.  Angiotensin-(1-7) receptor Mas agonist ameliorates progress of atherosclerosis in apoE-knockout mice , 2012, Pharmacological Reports.

[55]  A. Daugherty,et al.  Angiotensin-Converting Enzyme 2 Deficiency in Whole Body or Bone Marrow–Derived Cells Increases Atherosclerosis in Low-Density Lipoprotein Receptor−/− Mice , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[56]  Merlin C. Thomas,et al.  Genetic Ace2 Deficiency Accentuates Vascular Inflammation and Atherosclerosis in the ApoE Knockout Mouse , 2010, Circulation research.

[57]  Yihai Cao,et al.  Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells , 2010, Proceedings of the National Academy of Sciences.

[58]  D. Casley,et al.  Vasoprotective and Atheroprotective Effects of Angiotensin (1-7) in Apolipoprotein E–Deficient Mice , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[59]  S. Santos,et al.  Improved Lipid and Glucose Metabolism in Transgenic Rats With Increased Circulating Angiotensin-(1-7) , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[60]  K. Krause,et al.  Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 5 (Nox5) Regulation by Angiotensin II and Endothelin-1 Is Mediated via Calcium/Calmodulin-Dependent, Rac-1–Independent Pathways in Human Endothelial Cells , 2010, Circulation research.

[61]  T. Walther,et al.  Circulating Rather Than Cardiac Angiotensin-(1-7) Stimulates Cardioprotection After Myocardial Infarction , 2010, Circulation. Heart failure.

[62]  Hong Wang,et al.  Hyperhomocysteinemia and Endothelial Dysfunction. , 2009, Current hypertension reviews.

[63]  D. Harrison,et al.  Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. , 2008, Journal of the American College of Cardiology.

[64]  Arthur S Slutsky,et al.  Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. , 2008, American journal of physiology. Heart and circulatory physiology.

[65]  Bin Liu,et al.  Overexpression of ACE2 Enhances Plaque Stability in a Rabbit Model of Atherosclerosis , 2008, Arteriosclerosis, thrombosis, and vascular biology.

[66]  M. Daemen,et al.  Angiotensin‐converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions , 2008, The Journal of pathology.

[67]  J. Mehta,et al.  Over-expression of angiotensin II type 2 receptor (agtr2) decreases collagen accumulation in atherosclerotic plaque. , 2008, Biochemical and biophysical research communications.

[68]  S. Santos,et al.  Mas Deficiency in FVB/N Mice Produces Marked Changes in Lipid and Glycemic Metabolism , 2008, Diabetes.

[69]  D. Merrill,et al.  Angiotensin-(1–7) inhibits in vitro endothelial cell tube formation in human umbilical vein endothelial cells through the AT1–7 receptor , 2007, Endocrine.

[70]  M. Alessi,et al.  Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. , 2007, The American journal of pathology.

[71]  M. Cerinic,et al.  Reduced circulating levels of angiotensin-(1–7) in systemic sclerosis: a new pathway in the dysregulation of endothelial-dependent vascular tone control , 2007, Annals of the rheumatic diseases.

[72]  L. Cubeddu,et al.  Effects of statin treatment and withdrawal on angiotensin II-induced phosphorylation of p38 MAPK and ERK1/2 in cultured vascular smooth muscle cells. , 2007, Biochemical and biophysical research communications.

[73]  E. Schiffrin,et al.  Angiotensin-(1-7) Through Receptor Mas Mediates Endothelial Nitric Oxide Synthase Activation via Akt-Dependent Pathways , 2007, Hypertension.

[74]  G. Nickenig,et al.  Role of integrin-linked kinase in vascular smooth muscle cells: regulation by statins and angiotensin II. , 2006, Biochemical and biophysical research communications.

[75]  M. Alessi,et al.  The TNF alpha converting enzyme (TACE/ADAM17) is expressed in the atherosclerotic lesions of apolipoprotein E-deficient mice: possible contribution to elevated plasma levels of soluble TNF alpha receptors. , 2006, Atherosclerosis.

[76]  M. Black,et al.  Immunolocalization of ACE2 and AT2 Receptors in Rabbit Atherosclerotic Plaques , 2006, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[77]  R. Santos,et al.  Short-Term Angiotensin(1-7) Receptor Mas Stimulation Improves Endothelial Function in Normotensive Rats , 2005, Hypertension.

[78]  R. Widdop,et al.  Angiotensin-(1–7) Acts as a Vasodepressor Agent Via Angiotensin II Type 2 Receptors in Conscious Rats , 2005, Hypertension.

[79]  D. Fliser,et al.  Antiinflammatory Effects of Angiotensin II Subtype 1 Receptor Blockade in Hypertensive Patients With Microinflammation , 2004, Circulation.

[80]  A. Daugherty,et al.  Aortic Dissection Precedes Formation of Aneurysms and Atherosclerosis in Angiotensin II-Infused, Apolipoprotein E-Deficient Mice , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[81]  Thomas Walther,et al.  Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[82]  C. Giachelli,et al.  Osteopontin: a versatile regulator of inflammation and biomineralization. , 2000, Matrix biology : journal of the International Society for Matrix Biology.

[83]  J. Mehta,et al.  Oxidized LDL Upregulates Angiotensin II Type 1 Receptor Expression in Cultured Human Coronary Artery Endothelial Cells: The Potential Role of Transcription Factor NF-&kgr;B , 2000, Circulation.

[84]  J. Egido,et al.  Atorvastatin reduces NF-kappaB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells. , 1999, Atherosclerosis.

[85]  D. Jacobsen,et al.  Production of angiotensin-(1-7) by human vascular endothelium. , 1992, Hypertension.

[86]  D. Diz,et al.  Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. , 1989, The American journal of physiology.

[87]  C. Ferrario,et al.  Converting Enzyme Activity and Angiotensin Metabolism in the Dog Brainstem , 1988, Hypertension.

[88]  J. Ménard,et al.  Crossover design to test antihypertensive drugs with self-recorded blood pressure. , 1988, Hypertension.

[89]  C. Hermenegildo,et al.  Combined sub-optimal doses of rosuvastatin and bexarotene impair angiotensin II-induced arterial mononuclear cell adhesion through inhibition of Nox5 signaling pathways and increased RXR/PPARα and RXR/PPARγ interactions. , 2015, Antioxidants & redox signaling.

[90]  K. Krause,et al.  Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 5 ( Nox 5 ) Regulation by Angiotensin II and Endothelin-1 Is Mediated via Calcium / Calmodulin-Dependent , Rac1 – Independent Pathways in Human Endothelial Cells , 2010 .

[91]  山本 幸男 植物の代謝調節におけるnicotinamide adenine dinucleotide phosphateの役割 , 1970 .

[92]  J. Silva-Cardoso Os inibidores do sistema Renina-Angiotensina-Aldosterona e a epidemia Covid-19 , 2022, Revista Portuguesa de Cardiologia.