A Proof of the Consistency of the Finite Difference Technique on Sparse Grids
暂无分享,去创建一个
[1] Michael Griebel,et al. Optimized Approximation Spaces for Operator Equations , 1998 .
[2] P. Hemker,et al. On the Representation of Functions and Finite Difference Operators on Adaptive Dyadic Grids , 1999 .
[3] Michael Griebel,et al. Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..
[4] .. Griebel. Adaptive sparse grid multilevel methods for ellipticPDEs based on nite di erencesM , .
[5] Chi-Wang Shu,et al. High Order ENO and WENO Schemes for Computational Fluid Dynamics , 1999 .
[6] A. Cohen. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .
[7] R. DeVore,et al. Hyperbolic Wavelet Approximation , 1998 .
[8] Frauke Sprengel,et al. A Tool for Approximation in Bivariate Periodic Sobolev Spaces X2. Periodic Sobolev Spaces , 1998 .
[9] V. N. Temli︠a︡kov. Approximation of periodic functions , 1993 .
[10] F. Wubs. Notes on numerical fluid mechanics , 1985 .
[11] P. Hemker,et al. Approximation on partially ordered sets of regular grids , 1997 .
[12] Pieter W. Hemker,et al. Application of an Adaptive Sparse-Grid Technique to a Model Singular Perturbation Problem , 2000, Computing.
[13] U. Rüde,et al. Multilevel, Extrapolation, and Sparse Grid Methods , 1994 .
[14] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[15] Michael Griebel,et al. Adaptive Wavelet Solvers for the Unsteady Incompressible Navier-Stokes Equations , 2000 .
[16] S. B. Stechkin. Approximation of periodic functions , 1974 .