A Proof of the Consistency of the Finite Difference Technique on Sparse Grids

Abstract In this paper, we give a proof of the consistency of the finite difference technique on regular sparse grids [7, 18]. We introduce an extrapolation-type discretization of differential operators on sparse grids based on the idea of the combination technique and we show the consistency of this discretization. The equivalence of the new method with that of [7, 18] is established.

[1]  Michael Griebel,et al.  Optimized Approximation Spaces for Operator Equations , 1998 .

[2]  P. Hemker,et al.  On the Representation of Functions and Finite Difference Operators on Adaptive Dyadic Grids , 1999 .

[3]  Michael Griebel,et al.  Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..

[4]  .. Griebel Adaptive sparse grid multilevel methods for ellipticPDEs based on nite di erencesM , .

[5]  Chi-Wang Shu,et al.  High Order ENO and WENO Schemes for Computational Fluid Dynamics , 1999 .

[6]  A. Cohen Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .

[7]  R. DeVore,et al.  Hyperbolic Wavelet Approximation , 1998 .

[8]  Frauke Sprengel,et al.  A Tool for Approximation in Bivariate Periodic Sobolev Spaces X2. Periodic Sobolev Spaces , 1998 .

[9]  V. N. Temli︠a︡kov Approximation of periodic functions , 1993 .

[10]  F. Wubs Notes on numerical fluid mechanics , 1985 .

[11]  P. Hemker,et al.  Approximation on partially ordered sets of regular grids , 1997 .

[12]  Pieter W. Hemker,et al.  Application of an Adaptive Sparse-Grid Technique to a Model Singular Perturbation Problem , 2000, Computing.

[13]  U. Rüde,et al.  Multilevel, Extrapolation, and Sparse Grid Methods , 1994 .

[14]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[15]  Michael Griebel,et al.  Adaptive Wavelet Solvers for the Unsteady Incompressible Navier-Stokes Equations , 2000 .

[16]  S. B. Stechkin Approximation of periodic functions , 1974 .