Photovoltaic solar cell technologies: analysing the state of the art

The remarkable development in photovoltaic (PV) technologies over the past 5 years calls for a renewed assessment of their performance and potential for future progress. Here, we analyse the progress in cells and modules based on single-crystalline GaAs, Si, GaInP and InP, multicrystalline Si as well as thin films of polycrystalline CdTe and CuInxGa1−xSe2. In addition, we analyse the PV developments of the more recently emerged lead halide perovskites together with notable improvements in sustainable chalcogenides, organic PVs and quantum dots technologies. In addition to power conversion efficiencies, we consider many of the factors that affect power output for each cell type and note improvements in control over the optoelectronic quality of PV-relevant materials and interfaces and the discovery of new material properties. By comparing PV cell parameters across technologies, we appraise how far each technology may progress in the near future. Although accurate or revolutionary developments cannot be predicted, cross-fertilization between technologies often occurs, making achievements in one cell type an indicator of evolutionary developments in others. This knowledge transfer is timely, as the development of metal halide perovskites is helping to unite previously disparate, technology-focused strands of PV research.Nearly all types of solar photovoltaic cells and technologies have developed dramatically, especially in the past 5 years. Here, we critically compare the different types of photovoltaic technologies, analyse the performance of the different cells and appraise possibilities for future technological progress.

[1]  Martin A. Green,et al.  Solar cell efficiency tables (version 52) , 2018, Progress in Photovoltaics: Research and Applications.

[2]  He Yan,et al.  Design rules for minimizing voltage losses in high-efficiency organic solar cells , 2018, Nature Materials.

[3]  D. Macdonald,et al.  Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon , 2004 .

[4]  David Cahen,et al.  Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells , 2014, Nature Communications.

[5]  Aram Amassian,et al.  Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. , 2017, Nature materials.

[6]  Juan Bisquert,et al.  Assessing Possibilities and Limits for Solar Cells , 2011 .

[7]  Martin A. Green,et al.  Solar cell efficiency tables (version 47) , 2016 .

[8]  Prapat Pongkiatkul,et al.  Review of Environmental, Health and Safety of CdTe Photovoltaic Installations throughout Their Life-Cycle , 2012 .

[9]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry. Theory and experiment , 1993 .

[10]  Martin A. Green,et al.  Accuracy of analytical expressions for solar cell fill factors , 1982 .

[11]  Matthew C. Beard,et al.  Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells , 2017, Science Advances.

[12]  L. Hirst,et al.  Fundamental losses in solar cells , 2009 .

[13]  Jonathan D. Poplawsky,et al.  Structural and compositional dependence of the CdTexSe1−x alloy layer photoactivity in CdTe-based solar cells , 2016, Nature Communications.

[14]  Luis M. Pazos-Outón,et al.  Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency , 2018 .

[15]  H. Ade,et al.  Fast charge separation in a non-fullerene organic solar cell with a small driving force , 2016, Nature Energy.

[16]  Takuya Kato,et al.  Record Efficiency for Thin-Film Polycrystalline Solar Cells Up to 22.9% Achieved by Cs-Treated Cu(In,Ga)(Se,S)2 , 2019, IEEE Journal of Photovoltaics.

[17]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[18]  W. Warta,et al.  Solar cell efficiency tables (version 49) , 2017 .

[19]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[20]  M. Green,et al.  Solar cell efficiency tables (version 51) , 2018 .

[21]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[22]  Tom Markvart,et al.  The thermodynamics of optical étendue , 2008 .

[23]  Martin A. Green,et al.  Solar cell efficiency tables (Version 53) , 2018, Progress in Photovoltaics: Research and Applications.

[24]  Seth R. Marder,et al.  Non-fullerene acceptors for organic solar cells , 2018 .

[25]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[26]  Myoung Hee Yun,et al.  Device Architectures for Enhanced Photon Recycling in Thin‐Film Multijunction Solar Cells , 2015 .

[27]  Jessica de Wild,et al.  Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals , 2017 .

[28]  Tonio Buonassisi,et al.  Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites , 2015, 1504.02144.

[29]  Angela N. Fioretti,et al.  Defect Tolerant Semiconductors for Solar Energy Conversion. , 2014, The journal of physical chemistry letters.

[30]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[31]  Chung-Wen Lan,et al.  Development of high‐performance multicrystalline silicon for photovoltaic industry , 2015 .

[32]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[33]  W. Warta,et al.  Solar cell efficiency tables (version 50) , 2017 .

[34]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry theory and experiment , 1997 .

[35]  I. Sankin,et al.  CdTe Solar Cells at the Threshold to 20% Efficiency , 2013, IEEE Journal of Photovoltaics.

[36]  Yong Cao,et al.  Organic and solution-processed tandem solar cells with 17.3% efficiency , 2018, Science.

[37]  T. Tiedje,et al.  Band tail recombination limit to the output voltage of amorphous silicon solar cells , 1982 .

[38]  Thomas Kirchartz,et al.  Influence of energetic disorder on electroluminescence emission in polymer:fullerene solar cells , 2012 .

[39]  Z. Holman,et al.  Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17% , 2016, Nature Energy.

[40]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[41]  Martin A. Green,et al.  Radiative efficiency of state‐of‐the‐art photovoltaic cells , 2012 .

[42]  David Cahen,et al.  Updated Assessment of Possibilities and Limits for Solar Cells , 2014, Advanced materials.

[43]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[44]  D. Adachi,et al.  Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency , 2015 .

[45]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[46]  David Cahen,et al.  The effect of structural order on solar cell parameters, as illustrated in a SiC-organic junction model , 2013 .

[47]  Thomas Kirchartz,et al.  Optical Gaps of Organic Solar Cells as a Reference for Comparing Voltage Losses , 2018, Advanced Energy Materials.

[48]  A. Kahn,et al.  Photovoltaic efficiency limits and material disorder , 2012 .

[49]  Vladimir Bulovic,et al.  Radiative Efficiency Limit with Band Tailing Exceeds 30% for Quantum Dot Solar Cells , 2017 .

[50]  Thomas Kirchartz,et al.  Efficiency Potential of Photovoltaic Materials and Devices Unveiled by Detailed-Balance Analysis , 2017 .

[51]  Martin A. Green,et al.  Beyond 11% Efficient Sulfide Kesterite Cu2ZnxCd1–xSnS4 Solar Cell: Effects of Cadmium Alloying , 2017 .

[52]  Henry J Snaith,et al.  Present status and future prospects of perovskite photovoltaics , 2018, Nature Materials.

[53]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[54]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[55]  Seth R. Marder,et al.  Intrinsic non-radiative voltage losses in fullerene-based organic solar cells , 2017, Nature Energy.

[56]  Takashi Minemoto,et al.  Thin‐film Cu(In,Ga)(Se,S)2‐based solar cell with (Cd,Zn)S buffer layer and Zn1−xMgxO window layer , 2017 .

[57]  David Beljonne,et al.  Approaching disorder-free transport in high-mobility conjugated polymers , 2014, Nature.

[58]  Dan Oron,et al.  Self‐Healing Inside APbBr3 Halide Perovskite Crystals , 2018, Advances in Materials.

[59]  R. Eggert,et al.  The Availability of Indium: The Present, Medium Term, and Long Term , 2015 .

[60]  Jan Benick,et al.  High-Efficiency n-Type HP mc Silicon Solar Cells , 2017, IEEE Journal of Photovoltaics.

[61]  David Cahen,et al.  Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance , 1998 .

[62]  Ian D. Sharp,et al.  Band Tailing and Deep Defect States in CH3NH3Pb(I1–xBrx)3 Perovskites As Revealed by Sub-Bandgap Photocurrent , 2017 .

[63]  S. Glunz,et al.  Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells , 2013, IEEE Journal of Photovoltaics.

[64]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[65]  Martin A. Green,et al.  Solar cell efficiency tables (version 40) , 2012 .

[66]  Naomi Shida,et al.  Organic photovoltaic module development with inverted device structure , 2015 .

[67]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[68]  Myles A. Steiner,et al.  Enhanced external radiative efficiency for 20.8 efficient single-junction GaInP solar cells , 2013 .

[69]  Eli Yablonovitch,et al.  Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures , 1993 .

[70]  Richard Corkish,et al.  Very efficient light emission from bulk crystalline silicon , 2003 .

[71]  Aron Walsh,et al.  Identification of Killer Defects in Kesterite Thin-Film Solar Cells , 2018 .

[72]  Jean-Luc Brédas,et al.  Voltage Losses in Organic Solar Cells: Understanding the Contributions of Intramolecular Vibrations to Nonradiative Recombinations , 2018 .

[73]  Debora Keller,et al.  Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. , 2013, Nature materials.

[74]  John F. Geisz,et al.  CuPt ordering in high bandgap GaxIn1−xP alloys on relaxed GaAsP step grades , 2009 .

[75]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[76]  Tayfun Gokmen,et al.  Band tailing and efficiency limitation in kesterite solar cells , 2013 .