Modifier-Adaptation Methodology for Real-Time Optimization Reformulated as a Nested Optimization Problem

The following work presents a reformulation of the modifier-adaptation methodology for real-time optimization as a nested optimization problem. Using the idea of iteration over the modifiers, this method makes it possible to find a point that satisfies the necessary conditions of optimality (NCO) of the process, despite modeling mismatch, using an outer optimization layer that updates the gradient modifiers with the objective of minimizing the Lagrangian function estimation of the process. Moreover, if a direct search algorithm is implemented in this layer, we can find the optimum without explicitly computing the gradients of the process. The presented scheme was tested in three optimization examples, assuming the absence and presence of process noise, with parametric and structural uncertainty. The results show that in all the cases studied, the method converges to a close neighborhood of a point that satisfies the NCO of the real plant, being robust under noisy scenarios and without the need to estimate...

[1]  Sebastian Engell,et al.  A reliable modifier-adaptation strategy for real-time optimization , 2016, Comput. Chem. Eng..

[2]  Alejandro G. Marchetti,et al.  A new dual modifier-adaptation approach for iterative process optimization with inaccurate models , 2013, Comput. Chem. Eng..

[3]  Dominique Bonvin,et al.  Exploiting local quasiconvexity for gradient estimation in modifier-adaptation schemes , 2012, 2012 American Control Conference (ACC).

[4]  Dominique Bonvin,et al.  Comparison of Six Implicit Real-Time Optimization Schemes , 2012 .

[5]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[6]  Dominique Bonvin,et al.  Input Filter Design for Feasibility in Constraint-Adaptation Schemes , 2011 .

[7]  Dominique Bonvin,et al.  Use of transient measurements for the optimization of steady-state performance via modifier adaptation , 2014 .

[8]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[9]  Dominique Bonvin,et al.  A Dual Modifier-Adaptation Approach for Real-Time Optimization , 2010 .

[10]  Dominique Bonvin,et al.  Adaptation strategies for real-time optimization , 2009, Comput. Chem. Eng..

[11]  Dominique Bonvin,et al.  On the Use of Second-Order Modifiers for Real-Time Optimization , 2014 .

[12]  Anthony V. Fiacco,et al.  Introduction to Sensitivity and Stability Analysis in Nonlinear Programming , 2012 .

[13]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[14]  Thomas E. Marlin,et al.  Model adequacy requirements for optimizing plant operations , 1994 .

[15]  M. Guay,et al.  ADAPTIVE EXTREMUM SEEKING CONTROL OF NONLINEAR DYNAMIC SYSTEMS WITH PARAMETRIC UNCERTAINTIES , 2002 .

[16]  Sebastian Engell,et al.  Iterative set-point optimization of batch chromatography , 2005, Comput. Chem. Eng..

[17]  Sebastian Engell,et al.  Comparison of Modifier Adaptation Schemes in Real-Time Optimization , 2015 .

[18]  Rolf Isermann,et al.  Adaptive on-line steady-state optimization of slow dynamic processes , 1978, Autom..

[19]  J. E. Ellis,et al.  Comparison of methods for estimating real process derivatives in on-line optimization , 2003 .

[20]  Piotr Tatjewski,et al.  Iterative Algorithms For Multilayer Optimizing Control , 2005 .

[21]  Ignacio E. Grossmann,et al.  A note on approximation techniques used for process optimization , 1985 .

[22]  P. D. Roberts,et al.  An algorithm for steady-state system optimization and parameter estimation , 1979 .

[23]  Miroslav Krstic,et al.  Stability of extremum seeking feedback for general nonlinear dynamic systems , 2000, Autom..

[24]  B. Erik Ydstie,et al.  Adaptive extremum control using approximate process models , 1989 .

[25]  Dominique Bonvin,et al.  Use of Convex Model Approximations for Real-Time Optimization via Modifier Adaptation , 2013 .

[26]  Dominique Bonvin,et al.  From Discrete Measurements to Bounded Gradient Estimates: A Look at Some Regularizing Structures , 2013 .

[27]  Michael C. Ferris,et al.  A Direct Search Algorithm for Optimization with Noisy Function Evaluations , 2000, SIAM J. Optim..

[28]  Benoît Chachuat,et al.  Design Methodology of Modifier Adaptation for On-Line Optimization of Uncertain Processes , 2011 .

[29]  César de Prada,et al.  Nested Modifier-Adaptation for RTO in the Otto Williams Reactor , 2013 .

[30]  Piotr Tatjewski,et al.  AN ALGORITHM FOR STEADY-STATE OPTIMIZING DUAL CONTROL OF UNCERTAIN PLANTS , 1995 .

[31]  Dominique Bonvin,et al.  Modifier-adaptation methodology for real-time optimization , 2009 .

[32]  Gene A. Bunin On the equivalence between the modifier-adaptation and trust-region frameworks , 2014, Comput. Chem. Eng..

[33]  Stephen L. Morgan,et al.  Sequential Simplex Optimization: A Technique for Improving Quality and Productivity in Research, Development, and Manufacturing , 1991 .

[34]  Thomas E. Marlin,et al.  Model accuracy for economic optimizing controllers : the bias update case , 1994 .

[35]  César de Prada,et al.  Mixed Modifier-Adaptation for RTO in a Continuous Bioreactor , 2014 .

[36]  Piotr Tatjewski,et al.  ITERATIVE OPTIMIZING SET-POINT CONTROL – THE BASIC PRINCIPLE REDESIGNED , 2002 .