Prospects for axion searches with Advanced LIGO through binary mergers

The observation of gravitational waves from a binary neutron star merger by LIGO/VIRGO and the associated electromagnetic counterpart provides a high precision test of orbital dynamics, and therefore a new and sensitive probe of extra forces and new radiative degrees of freedom. Axions are one particularly well-motivated class of extensions to the Standard Model leading to new forces and sources of radiation, which we focus on in this paper. Using an effective field theory (EFT) approach, we calculate the first post-Newtonian corrections to the orbital dynamics, radiated power, and gravitational waveform for binary neutron star mergers in the presence of an axion. This result is applicable to many theories which add an extra massive scalar degree of freedom to General Relativity. We then perform a detailed forecast of the potential for Advanced LIGO to constrain the free parameters of the EFT, and map these to the mass $m_a$ and decay constant $f_a$ of the axion. At design sensitivity, we find that Advanced LIGO can potentially exclude axions with $m_a \lesssim 10^{-11} \ {\rm eV}$ and $f_a \sim (10^{14} - 10^{17}) \ {\rm GeV}$. There are a variety of complementary observational probes over this region of parameter space, including the orbital decay of binary pulsars, black hole superradiance, and laboratory searches. We comment on the synergies between these various observables.

[1]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[2]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[3]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[4]  L. Rosenberg,et al.  Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment. , 2018, Physical review letters.

[5]  R. Lasenby,et al.  Axion and hidden photon dark matter detection with multilayer optical haloscopes , 2018, Physical Review D.

[6]  R. Essig,et al.  Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle , 2018, Journal of High Energy Physics.

[7]  A. Hook Solving the Hierarchy Problem Discretely. , 2018, Physical review letters.

[8]  Kurt Hinterbichler,et al.  Massive and massless spin-2 scattering and asymptotic superluminality , 2017, Journal of High Energy Physics.

[9]  A. Vuorinen,et al.  Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State. , 2017, Physical review letters.

[10]  M. Sakellariadou,et al.  Neutron star mergers as a probe of modifications of general relativity with finite-range scalar forces , 2017, 1709.06634.

[11]  A. Hook,et al.  Probing axions with neutron star inspirals and other stellar processes , 2017, Journal of High Energy Physics.

[12]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[13]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[14]  Kurt Hinterbichler,et al.  Massive spin-2 scattering and asymptotic superluminality , 2017, 1708.05716.

[15]  L. Lehner,et al.  Fixing extensions to general relativity in the nonlinear regime , 2017, 1706.07421.

[16]  E. Berti,et al.  Stochastic and Resolvable Gravitational Waves from Ultralight Bosons. , 2017, Physical review letters.

[17]  L. Senatore,et al.  An effective formalism for testing extensions to General Relativity with gravitational waves , 2017, 1704.01590.

[18]  N. Yunes,et al.  Cosmological evolution and Solar System consistency of massive scalar-tensor gravity , 2017, 1703.06341.

[19]  B. Majorovits,et al.  Dielectric Haloscopes: A New Way to Detect Axion Dark Matter. , 2016, Physical review letters.

[20]  S. Dimopoulos,et al.  Black Hole Mergers and the QCD Axion at Advanced LIGO , 2016, 1604.03958.

[21]  C. Palenzuela,et al.  Dynamical boson stars , 2012, Living Reviews in Relativity.

[22]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[23]  C. Speake,et al.  Searching for galactic axions through magnetized media: the QUAX proposal , 2016, 1606.02201.

[24]  F. Pretorius,et al.  Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226 , 2016, 1603.08955.

[25]  B. A. Boom,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .

[26]  Y. Wang,et al.  GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. , 2016, Physical review. D..

[27]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[28]  B. Safdi,et al.  Broadband and Resonant Approaches to Axion Dark Matter Detection. , 2016, Physical review letters.

[29]  F. Pretorius,et al.  Spontaneous Scalarization with Massive Fields , 2016, 1601.07475.

[30]  Javier Pardo Vega,et al.  The QCD axion, precisely , 2015, 1511.02867.

[31]  A. Arvanitaki,et al.  Discovering the QCD Axion with Black Holes and Gravitational Waves , 2014, 1411.2263.

[32]  M. Johnson,et al.  Nonlinear dynamical stability of infrared modifications of gravity , 2014, 1409.0886.

[33]  M. Kamionkowski,et al.  Dark energy from the string axiverse. , 2014, Physical review letters.

[34]  J. Maldacena,et al.  Causality constraints on corrections to the graviton three-point coupling , 2014, Journal of High Energy Physics.

[35]  A. Geraci,et al.  Resonantly detecting axion-mediated forces with nuclear magnetic resonance. , 2014, Physical review letters.

[36]  Dmitry Budker,et al.  Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr) , 2013, 1306.6089.

[37]  P. Graham,et al.  New Observables for Direct Detection of Axion Dark Matter , 2013, 1306.6088.

[38]  B. Sathyaprakash Corrigendum: Scientific objectives of Einstein telescope , 2013 .

[39]  A. Matas,et al.  Galileon radiation from binary systems , 2012, 1212.5212.

[40]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[41]  S. Bose,et al.  Scientific objectives of Einstein Telescope , 2012, 1206.0331.

[42]  C. Palenzuela,et al.  Dynamical Boson Stars , 2012, Living Reviews in Relativity.

[43]  J. Alsing,et al.  Light scalar field constraints from gravitational-wave observations of compact binaries , 2012, 1204.4340.

[44]  A. Ross Multipole expansion at the level of the action , 2012, 1202.4750.

[45]  Bernard F. Schutz,et al.  Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime , 2012, 1201.3621.

[46]  C. Will,et al.  Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity , 2011, 1112.4903.

[47]  V. Cardoso,et al.  Gravitational waves from quasicircular extreme mass-ratio inspirals as probes of scalar-tensor theories , 2011, 1112.3351.

[48]  J. A. Oller,et al.  The chiral representation of the $\pi N$ scattering amplitude and the pion-nucleon sigma term , 2011, 1110.3797.

[49]  Sayed Fawad Hassan,et al.  Bimetric gravity from ghost-free massive gravity , 2011, 1109.3515.

[50]  Kurt Hinterbichler Theoretical Aspects of Massive Gravity , 2011, 1105.3735.

[51]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[52]  J. Gair,et al.  eLISA/NGO: Astrophysics and cosmology in the gravitational-wave millihertz regime , 2012 .

[53]  J. Maldacena,et al.  On graviton non-gaussianities during inflation , 2011, 1104.2846.

[54]  I. Mandel,et al.  THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.

[55]  Claudia de Rham,et al.  Resummation of massive gravity. , 2010, Physical review letters.

[56]  A. Arvanitaki,et al.  Exploring the String Axiverse with Precision Black Hole Physics , 2010, 1004.3558.

[57]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[58]  Aharon Kapitulnik,et al.  Improved constraints on non-Newtonian forces at 10 microns , 2008, 0802.2350.

[59]  Walter D. Goldberger Les Houches lectures on effective field theories and gravitational radiation , 2007, hep-ph/0701129.

[60]  C. Hoyle,et al.  Tests of the gravitational inverse-square law below the dark-energy length scale. , 2006, Physical review letters.

[61]  Tristan L. Smith,et al.  Solar system tests do rule out 1/R gravity , 2006, astro-ph/0610483.

[62]  R. Rattazzi,et al.  Causality, analyticity and an IR obstruction to UV completion , 2006, hep-th/0602178.

[63]  J. Richardson,et al.  Improved experimental limit on the electric dipole moment of the neutron. , 2006, Physical review letters.

[64]  I. Rothstein,et al.  Effective field theory of gravity for extended objects , 2004, hep-th/0409156.

[65]  S. Dubovsky Phases of massive gravity , 2004 .

[66]  V. Rubakov Lorentz-violating graviton masses: getting around ghosts, low strong coupling scale and VDVZ discontinuity , 2004 .

[67]  V.Rubakov Lorentz-violating graviton masses: getting around ghosts, low strong coupling scale and VDVZ discontinuity , 2004, hep-th/0407104.

[68]  M. Bershady,et al.  Publications of the Astronomical Society of the Pacific , 2004 .

[69]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[70]  A. Nelson,et al.  TESTS OF THE GRAVITATIONAL INVERSE-SQUARE LAW , 2003, hep-ph/0307284.

[71]  C. Hoyle,et al.  SUB-MILLIMETER TESTS OF THE GRAVITATIONAL INVERSE SQUARE LAW , 2001, hep-ph/0405262.

[72]  C. Will The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[73]  S. Hughes,et al.  Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.

[74]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[75]  T. Damour,et al.  Tensor-scalar gravity and binary-pulsar experiments. , 1996, Physical review. D, Particles and fields.

[76]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[77]  Finn,et al.  Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.

[78]  Sikivie Erratum: Detection rates for "invisible"-axion searches , 1987, Physical review. D, Particles and fields.

[79]  P. Sikivie,et al.  Detection rates for "invisible"-axion searches. , 1985, Physical review. D, Particles and fields.

[80]  Moody,et al.  Calculations for cosmic axion detection. , 1985, Physical review letters.

[81]  P. Sikivie Experimental Tests of the "INVISIBLE" Axion , 1983 .

[82]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[83]  S. Weinberg A new light boson , 1978 .

[84]  R. Peccei,et al.  Constraints imposed by CP conservation in the presence of pseudoparticles , 1977 .

[85]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .

[86]  Illtyd Trethowan Causality , 1938 .

[87]  A. Einstein,et al.  The Gravitational equations and the problem of motion , 1938 .