A computational framework for agglomeration in thermochemically reacting granular flows

A computational framework is developed which couples a series of models, each describing vastly different physical events, in order to characterize particle growth (agglomeration) in thermochemically reacting granular flows. The modelling is purposely simplified to expose the dominant mechanisms which control agglomeration. The overall system is comprised of relatively simple coupled submodels describing impact, heat production, bonding and fragmentation, each of which can be replaced by more elaborate descriptions, if and when they are available. Inverse problems, solved with a genetic algorithm, are then constructed to ascertain system parameters which maximize agglomeration likelihood within a range of admissible data.

[1]  Chinyere Okechi Onwubiko,et al.  Introduction to engineering design optimization , 1999 .

[2]  Tarek I. Zohdi,et al.  Computational design of swarms , 2003 .

[3]  Manolis Papadrakakis Solving Large-scale Problems in Mechanics , 1993 .

[4]  J. Barranco,et al.  Scalings and Asymptotics of Coherent Vortices in Protoplanetary Disks , 2000 .

[5]  M. Meyers,et al.  Controlled high‐rate localized shear in porous reactive media , 1994 .

[6]  DID PLANET FORMATION BEGIN INSIDE PERSISTENT GASEOUS VORTICES , 1995, astro-ph/9501050.

[7]  D. Benson,et al.  Micromechanical modeling of shock-induced chemical reactions in heterogeneous multi-material powder mixtures , 2001 .

[8]  J. Blum,et al.  Experiments on Sticking, Restructuring, and Fragmentation of Preplanetary Dust Aggregates , 2000 .

[9]  P. Monteiro,et al.  Extraction of Elastic Moduli From Granular Compacts , 2002 .

[10]  V. Nesterenko,et al.  Dynamics of Heterogeneous Materials , 2001 .

[11]  Serge Piperno,et al.  Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations , 1997 .

[12]  T. Pardoena,et al.  An extended model for void growth and coalescence , 2022 .

[13]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[14]  A. Provenzale,et al.  Forming Planetesimals in Vortices , 1996 .

[15]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[16]  J. Barbera,et al.  Contact mechanics , 1999 .

[17]  J. Colwell,et al.  A New Mechanism Relevant to the Formation of Planetesimals in the Solar Nebula , 2001 .

[18]  K. Supulver,et al.  Formation of Icy Planetesimals in a Turbulent Solar Nebula , 2000 .

[19]  Bernhard A. Schrefler A partitioned solution procedure for geothermal reservoir analysis , 1985 .

[20]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[21]  T I Zohdi,et al.  Genetic design of solids possessing a random–particulate microstructure , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Lallit Anand,et al.  Constitutive equations for metal powders: application to powder forming processes , 2001 .

[23]  O. Axelsson Iterative solution methods , 1995 .

[24]  D. Davis,et al.  Accretional Evolution of a Planetesimal Swarm , 1997 .

[25]  M. Meyers Dynamic Behavior of Materials , 1994 .

[26]  Alexander G. G. M. Tielens,et al.  The Physics of Dust Coagulation and the Structure of Dust Aggregates in Space , 1997 .

[27]  T. Zohdi An adaptive‐recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids , 2002 .

[28]  Ioannis Doltsinis Solution of coupled systems by distinct operators , 1997 .

[29]  Dust Properties and Assembly of Large Particles in Protoplanetary Disks , 1999, astro-ph/9902241.

[30]  Norman A. Fleck,et al.  On the cold compaction of powders , 1995 .

[31]  J. Barranco,et al.  Vortices in Protoplanetary Disks and the Formation of Planetesimals , 2000 .

[32]  E. Kokubo,et al.  Formation of Protoplanets from Planetesimals in the Solar Nebula , 2000 .

[33]  Lanny D. Schmidt,et al.  The engineering of chemical reactions , 1997 .

[34]  W. M. Kaula,et al.  Dynamical Evolution of Planetesimals in the Outer Solar System: I. The Jupiter/Saturn Zone , 1999 .

[35]  T. Zohdi On the compaction of cohesive hyperelastic granules , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  J. M. Champney,et al.  Particle-Gas Dynamics in the Midplane of a Protoplanetary Nebula , 1993 .

[37]  H. Glosch,et al.  Thermal flow sensor for liquids and gases , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.

[38]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[39]  J. Pollack,et al.  Composition and radiative properties of grains in molecular clouds and accretion disks , 1994 .

[40]  Erik Asphaug,et al.  Impact Simulations with Fracture. I. Method and Tests , 1994 .

[41]  N. Thadhani Shock-induced chemical reactions and synthesis of materials , 1993 .

[42]  E. Kokubo,et al.  ON RUNAWAY GROWTH OF PLANETESIMALS , 1996 .

[43]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[44]  S. Weidenschilling,et al.  Formation of planetesimals in the solar nebula , 1993 .

[45]  W. M. Kaula,et al.  Dynamical Evolution of Planetesimals in the Outer Solar System II. The Saturn/Uranus and Uranus/Neptune Zones , 1999 .

[46]  K. Vecchio,et al.  SHOCK SYNTHESIS OF SILICIDES--II. THERMODYNAMICS AND KINETICS , 1994 .

[47]  O. C. Zienkiewicz,et al.  Coupled Problems and Their Numerical Solution , 1989 .

[48]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[49]  Du,et al.  Breakdown of hydrodynamics in a one-dimensional system of inelastic particles. , 1995, Physical review letters.

[50]  S. Brown,et al.  Yield behavior of metal powder assemblages , 1994 .

[51]  W. Goldsmith,et al.  Impact: the theory and physical behaviour of colliding solids. , 1960 .

[52]  K. Vecchio,et al.  Shock synthesis of silicides—I. experimentation and microstructural evolution , 1994 .

[53]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[54]  Lallit Anand,et al.  Granular materials: constitutive equations and strain localization , 2000 .

[55]  Norman A. Fleck,et al.  The yield behaviour of metal powders , 1997 .

[56]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[57]  B. Schrefler,et al.  Coupling versus uncoupling in soil consolidation , 1991 .

[58]  T. Zohdi Large-scale statistical inverse computation of inelastic accretion in transient granular flows , 2003 .