Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud

Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial resolution and daily revisit cycle). We implement a bias-aware Kalman filter method in the Google Earth Engine (GEE) platform to obtain fused images at the Landsat spatial-resolution. The added bias correction in the Kalman filter estimates accounts for the fact that both model and observation errors are temporally auto-correlated and may have a non-zero mean. This approach also enables reliable estimation of the uncertainty associated with the final reflectance estimates, allowing for error propagation analyses in higher level remote sensing products. Quantitative and qualitative evaluations of the generated products through comparison with other state-of-the-art methods confirm the validity of the approach, and open the door to operational applications at enhanced spatio-temporal resolutions at broad continental scales.

[1]  Joanne C. White,et al.  Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. , 2009 .

[2]  Herman Eerens,et al.  Data Assimilation of PROBA-V 100 and 300 m , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[3]  Suming Jin,et al.  Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information , 2015 .

[4]  Jin Chen,et al.  A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter , 2004 .

[5]  B. Friedland Treatment of bias in recursive filtering , 1969 .

[6]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[7]  Zhe Zhu,et al.  Cloud detection algorithm comparison and validation for operational Landsat data products , 2017 .

[8]  Bo Huang,et al.  Spatiotemporal Satellite Image Fusion Through One-Pair Image Learning , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Hankui K. Zhang,et al.  A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance , 2016 .

[10]  F. Javier García-Haro,et al.  A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion , 2015 .

[11]  G. Matheron Principles of geostatistics , 1963 .

[12]  D. Roy,et al.  Continental-scale Validation of MODIS-based and LEDAPS Landsat ETM+ Atmospheric Correction Methods , 2012 .

[13]  H. Madsen,et al.  Bias aware Kalman filters: Comparison and improvements , 2006 .

[14]  Gang Yang,et al.  Missing Information Reconstruction of Remote Sensing Data: A Technical Review , 2015, IEEE Geoscience and Remote Sensing Magazine.

[15]  W. Dulaney,et al.  Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer , 1991 .

[16]  M. Claverie,et al.  Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products , 2015 .

[17]  John S. Kimball,et al.  A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States , 2017, Remote. Sens..

[18]  Thomas Hilker,et al.  An Improved Image Fusion Approach Based on Enhanced Spatial and Temporal the Adaptive Reflectance Fusion Model , 2013, Remote. Sens..

[19]  Xiaocui Wu,et al.  Numerical Terradynamic Simulation Group 2-2018 Regional Crop Gross Primary Productivity and Yield Estimation Using Fused Landsat-MODIS Data , 2018 .

[20]  F. Baret,et al.  A comparison of methods for smoothing and gap filling time series of remote sensing observations - application to MODIS LAI products , 2012 .

[21]  Serhiy Skakun,et al.  A Method for Landsat and Sentinel 2 (HLS) BRDF Normalization , 2019, Remote. Sens..

[22]  Zhe Zhu,et al.  Current status of Landsat program, science, and applications , 2019, Remote Sensing of Environment.

[23]  John S. Kimball,et al.  Satellite data-driven modeling of field scale evapotranspiration in croplands using the MOD16 algorithm framework , 2019, Remote Sensing of Environment.

[24]  Feng Gao,et al.  Landsat Ecosystem Disturbance Adaptive Processing System LEDAPS algorithm description , 2013 .

[25]  Arlindo da Silva,et al.  Data assimilation in the presence of forecast bias , 1998 .

[26]  Zhiwei Li,et al.  A Spatiotemporal Fusion Based Cloud Removal Method for Remote Sensing Images With Land Cover Changes , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[27]  Xiaolin Zhu,et al.  An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions , 2010 .

[28]  Bin Chen,et al.  Comparison of Spatiotemporal Fusion Models: A Review , 2015, Remote. Sens..

[29]  José A. Sobrino,et al.  Comparison of cloud-reconstruction methods for time series of composite NDVI data , 2010 .

[30]  Meng Liu,et al.  An Improved Flexible Spatiotemporal DAta Fusion (IFSDAF) method for producing high spatiotemporal resolution normalized difference vegetation index time series , 2019, Remote Sensing of Environment.

[31]  Iain Brown,et al.  Spatio-temporal MODIS EVI gap filling under cloud cover: An example in Scotland , 2012 .

[32]  Qingshan Liu,et al.  Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[33]  David Frantz,et al.  FORCE - Landsat + Sentinel-2 Analysis Ready Data and Beyond , 2019, Remote. Sens..

[34]  Luis Alonso,et al.  Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[35]  María Amparo Gilabert,et al.  Noise Reduction and Gap Filling of fAPAR Time Series Using an Adapted Local Regression Filter , 2014, Remote. Sens..

[36]  J. S. Kimball,et al.  Improving continuity of MODIS terrestrial photosynthesis products using an interpolation scheme for cloudy pixels , 2005 .

[37]  Luis Guanter,et al.  Multitemporal Unmixing of Medium-Spatial-Resolution Satellite Images: A Case Study Using MERIS Images for Land-Cover Mapping , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Miguel D. Mahecha,et al.  An extended approach for spatiotemporal gapfilling: dealing with large and systematic gaps in geoscientific datasets , 2012 .

[39]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Bo Huang,et al.  Spatiotemporal Reflectance Fusion via Sparse Representation , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Per Jönsson,et al.  Seasonality extraction by function fitting to time-series of satellite sensor data , 2002, IEEE Trans. Geosci. Remote. Sens..

[42]  D. Roy,et al.  Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data , 2008 .

[43]  Darrel L. Williams,et al.  The Landsat 7 mission: terrestrial research and applications for the 21st century , 2001 .

[44]  Joanne C. White,et al.  A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS , 2009 .

[45]  Pak Wai Chan,et al.  Spatio-Temporal Data Fusion for Satellite Images Using Hopfield Neural Network , 2019, Remote. Sens..

[46]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[47]  S. Liang Quantitative Remote Sensing of Land Surfaces , 2003 .

[48]  Philip Lewis,et al.  Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model , 2019, European Journal of Agronomy.

[49]  Zeljko Tekic,et al.  What Drives Technology Innovation in New Space?: A Preliminary Analysis of Venture Capital Investments in Earth Observation Start-Ups , 2019, IEEE Geoscience and Remote Sensing Magazine.

[50]  Pieter Kempeneers,et al.  A Kalman Filter-Based Method to Generate Continuous Time Series of Medium-Resolution NDVI Images , 2014, Remote. Sens..

[51]  Jian Peng,et al.  STAIR: A generic and fully-automated method to fuse multiple sources of optical satellite data to generate a high-resolution, daily and cloud-/gap-free surface reflectance product , 2018, Remote Sensing of Environment.

[52]  D. Roy,et al.  Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States , 2010 .

[53]  Hideki Kobayashi,et al.  Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index , 2005 .

[54]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[55]  C. Justice,et al.  Atmospheric correction of MODIS data in the visible to middle infrared: first results , 2002 .

[56]  K. Beurs,et al.  Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology , 2012 .

[57]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[58]  Weidong Li,et al.  Gaps‐fill of SLC‐off Landsat ETM+ satellite image using a geostatistical approach , 2007 .

[59]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[60]  Claire Marais-Sicre,et al.  Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series , 2016, Remote. Sens..

[61]  Alexei Lyapustin,et al.  MODIS Collection 6 MAIAC algorithm , 2018, Atmospheric Measurement Techniques.

[62]  Eric Vermote,et al.  Atmospheric correction for the monitoring of land surfaces , 2008 .

[63]  Bernhard Geiger,et al.  Use of a Kalman filter for the retrieval of surface BRDF coefficients with a time-evolving model based on the ECOCLIMAP land cover classification , 2008 .

[64]  Onisimo Mutanga,et al.  Google Earth Engine Applications Since Inception: Usage, Trends, and Potential , 2018, Remote. Sens..

[65]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[66]  J. Irons,et al.  Landsat 8: The plans, the reality, and the legacy , 2016 .

[67]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[68]  John F. Mustard,et al.  A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data , 2007 .

[69]  Jungho Im,et al.  Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches , 2016, Remote. Sens..

[70]  Yujie Wang,et al.  An automatic cloud mask algorithm based on time series of MODIS measurements , 2008 .

[71]  Hankui K. Zhang,et al.  Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. , 2016, Remote sensing of environment.

[72]  Yingxin Gu,et al.  Downscaling 250-m MODIS Growing Season NDVI Based on Multiple-Date Landsat Images and Data Mining Approaches , 2015, Remote. Sens..

[73]  Alfredo Huete,et al.  Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation , 2018 .