Effect of the temperature variation of γ-sources on the resonance scattering cross section

[1]  R. Blankenbecler Structured targets and the Landau-Pomeranchuk-Migdal effect , 1997 .

[2]  Jacob,et al.  Correlation between anomalous hydrogen absorption and 56Fe-bonding strength in the Zr(AlxFe1-x)2 system. , 1994, Physical review. B, Condensed matter.

[3]  R. Moreh Nuclear resonance photon scattering and the uncertainty principle , 1994 .

[4]  E. Kessler,et al.  Study of Low Energetic Atomic Collisions in Solids Using High-Resolution (n, γ) Spectroscopy , 1989 .

[5]  E. Kessler,et al.  Determination of short lifetimes with ultra high resolution (n, γ) spectroscopy , 1988 .

[6]  H. Börner,et al.  Dopper shift attenuation lifetime measurement in 54Cr following thermal neutron capture , 1988 .

[7]  R. Moreh Studies in nuclear spectroscopy using the (γ, γ') and the (γ, n) reactions , 1979 .

[8]  E. Kessler,et al.  Redetermination ofAu198andIr192γ-Ray Standards between 0.1 and 1.0 MeV , 1978 .

[9]  O. Shahal,et al.  Effect of molecular binding on the resonance scattering of photons from the 6.324 MeV level in 15N , 1976 .

[10]  O. Shahal,et al.  Study of the temperature effect of resonantly scattered capture γ-rays , 1974 .

[11]  O. Shahal,et al.  Properties of nuclear levels photoexcited by neutron-capture γ-rays of Ti and Cu , 1974 .

[12]  R. Moreh,et al.  Properties of nuclear levels excited by neutron capture γ-rays from cobalt , 1974 .

[13]  B. Arad,et al.  Nuclear Studies with Neutron-Capture gamma Rays , 1973 .

[14]  S. Shlomo,et al.  RADIATIVE WIDTHS, SPINS, AND PARITIES OF NUCLEAR LEVELS IN THE 6 TO 9-MeV REGION EXCITED BY NEUTRON CAPTURE $gamma$ RAYS. , 1970 .

[15]  N. Shikazono,et al.  The Ground-State Transition Width of the 7368-keV Level of 66Zn , 1969 .