Bayesian Wavelet-Based Methods for the Detection of Multiple Changes of the Long Memory Parameter

Long memory processes are widely used in many scientific fields, such as economics, physics, and engineering. Change point detection problems have received considerable attention in the literature because of their wide range of possible applications. Here we describe a wavelet-based Bayesian procedure for the estimation and location of multiple change points in the long memory parameter of Gaussian autoregressive fractionally integrated moving average models (ARFIMA(p,d,q)), with unknown autoregressive and moving average parameters. Our methodology allows the number of change points to be unknown. The reversible jump Markov chain Monte Carlo algorithm is used for posterior inference. The method also produces estimates of all model parameters. Performances are evaluated on simulated data and on the benchmark Nile river dataset

[1]  Brandon Whitcher,et al.  Wavelet estimation of a local long memory parameter , 2000 .

[2]  A. I. McLeod,et al.  Preservation of the rescaled adjusted range: 1. A reassessment of the Hurst Phenomenon , 1978 .

[3]  Mark J. Jensen Using wavelets to obtain a consistent ordinary least squares estimator of the long-memory parameter , 1997 .

[4]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[5]  Joseph E. Cavanaugh,et al.  Self-similarity index estimation via wavelets for locally self-similar processes , 2001 .

[6]  M. Vannucci,et al.  Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective , 1999 .

[7]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[8]  Mark J. Jensen,et al.  Semiparametric Bayesian Inference of Long‐Memory Stochastic Volatility Models , 2004 .

[9]  A. I. McLeod,et al.  Fractional time series modelling , 1986 .

[10]  Marina Vannucci,et al.  Bayesian wavelet analysis of autoregressive fractionally integrated moving-average processes , 2006 .

[11]  Nalini Ravishanker,et al.  Bayesian analysis of autoregressive fractionally integrated moving‐average processes , 1998 .

[12]  Fallaw Sowell Maximum likelihood estimation of stationary univariate fractionally integrated time series models , 1992 .

[13]  Mark J. Jensen An Alternative Maximum Likelihood Estimator of Long-Memeory Processes Using Compactly Supported Wavelets , 1997 .

[14]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[15]  M. Taqqu,et al.  Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .

[16]  B. Ray,et al.  Bayesian methods for change‐point detection in long‐range dependent processes , 2002 .

[17]  Anthony C. Davison,et al.  Wavestrapping time series: Adaptive wavelet-based bootstrapping , 2000 .

[18]  M. Vannucci,et al.  Wavelet Packet Methods for the Analysis of Variance of Time Series With Application to Crack Widths on the Brunelleschi Dome , 2004 .

[19]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Michael R. Chernick,et al.  Wavelet Methods for Time Series Analysis , 2001, Technometrics.

[21]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[22]  Jan Beran,et al.  Testing for a change of the long-memory parameter , 1996 .

[23]  S. Chib Estimation and comparison of multiple change-point models , 1998 .

[24]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[25]  A.H. Tewfik,et al.  Correlation structure of the discrete wavelet coefficients of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[26]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[27]  Nalini Ravishanker,et al.  Bayesian modelling of ARFIMA processes by Markov chain Monte Carlo methods , 1996 .

[28]  H. H. Prince Omar Toussoun,et al.  Memoire sur l'Histoire du Nil , 1926 .

[29]  Gary Koop,et al.  Bayesian Analysis of Long Memory and Persistence using ARFIMA Models , 1995 .