Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer

Sebastian M. Armasu | Yurii B. Shvetsov | A. Whittemore | L. Kiemeney | M. Pike | M. Beckmann | P. Fasching | R. Vierkant | T. Sellers | P. Hall | P. Laird | J. Chang-Claude | M. García-Closas | B. Fridley | E. Goode | Robert Brown | B. Karlan | N. Le | A. Berchuck | E. Iversen | G. Giles | G. Severi | T. Dörk | M. Southey | D. Easton | Xifeng Wu | Hui Shen | D. Huntsman | P. Pharoah | D. Lambrechts | D. Stram | M. Köbel | A. Brooks-Wilson | D. Levine | Daniel Vincent | M. Gore | P. Hillemanns | X. Shu | W. Zheng | A. Ziogas | H. Anton-Culver | U. Menon | A. Gentry-Maharaj | E. Benjamin | K. Aben | D. Eccles | G. Chenevix-Trench | L. Brinton | J. Lissowska | H. Nevanlinna | N. Bogdanova | J. Beesley | Xiaoqing Chen | J. Cunningham | M. Goodman | R. Hein | F. Bacot | D. Tessier | S. Nickels | L. Baglietto | A. Ekici | A. Jakubowska | J. Lubiński | N. Antonenkova | K. Matsuo | A. Wu | S. Teo | J. Tyrer | S. Wang-gohrke | C. Bunker | A. Monteiro | S. Gayther | D. Cramer | D. J. Van Den Berg | N. Wentzensen | I. Vergote | R. Ness | A. Vitonis | S. Olson | H. Risch | L. Kelemen | S. Narod | K. Odunsi | I. Campbell | I. Runnebaum | I. Orlow | J. Doherty | J. Schildkraut | K. Moysich | F. Modugno | B. Ji | M. Cicek | H. Kajiyama | K. Lu | J. McLaughlin | G. Keeney | H. Salvesen | L. Massuger | A. V. van Altena | G. Konecny | E. Bandera | M. Hildebrandt | M. K. Halle | J. Flanagan | F. Heitz | P. Harter | A. du Bois | R. Butzow | K. Lawrenson | Hannah P. Yang | C. Cybulski | V. McGuire | W. Sieh | L. Rodriguez-Rodriguez | B. Winterhoff | M. Block | V. Shridhar | Honglin Song | C. Phelan | A. Jensen | L. Cook | J. Gronwald | N. Siddiqui | S. Tworoger | G. Lurie | R. Edwards | E. Høgdall | C. Høgdall | S. Ramus | E. Wik | C. Krakstad | J. Paul | T. Pejović | I. Rzepecka | A. Dansonka-Mieszkowska | J. Kupryjańczyk | E. Despierre | L. Pelttari | S. Armasu | P. Thompson | M. Dürst | S. Hosono | S. Lambrechts | Alice W. Lee | A. Leminen | Dong Liang | L. Lundvall | E. Poole | I. Schwaab | Y. Shvetsov | K. Terry | K. Kalli | E. Wozniak | M. Larson | D. Stram | Yin Ling Woo | Rachel Palmieri Weber | C. Templeman | Mary Anne Rossing | S. Renner | Siti Zawiah Omar | T. Nakanishi | J. Moes-Sosnowska | N. A. Mat Adenan | S. Krüger Kjaer | Rod Karevan | M. Hoatlin | Bridget Charbonneau | D. Brueggmann | Celeste Leigh Pearce | Liisa M. Pelttari | E. Woźniak | T. Pejovic | K. Lu | A. Monteiro | P. Hall | K. Lu | J. Paul | A. van Altena | R. Edwards | M. Larson | A. Wu | J. McLaughlin

[1]  M. Pike,et al.  Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case–control studies , 2012, The Lancet. Oncology.

[2]  A. Berchuck,et al.  Role of common genetic variants in ovarian cancer susceptibility and outcome: progress to date from the ovarian cancer association consortium (OCAC) , 2012, Journal of internal medicine.

[3]  K. Gunderson,et al.  High density DNA methylation array with single CpG site resolution. , 2011, Genomics.

[4]  J. Brenton,et al.  Ovarian clear cell carcinoma—bad endometriosis or bad endometrium? , 2011, The Journal of pathology.

[5]  R. Ward,et al.  Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5'UTR. , 2011, Cancer cell.

[6]  M. Thun,et al.  Large-scale fine mapping of the HNF1B locus and prostate cancer risk. , 2011, Human molecular genetics.

[7]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[8]  M. Beckmann,et al.  Genome-wide association study identifies a common variant associated with risk of endometrial cancer , 2011, Nature Genetics.

[9]  Timothy J. Durham,et al.  Systematic analysis of chromatin state dynamics in nine human cell types , 2011, Nature.

[10]  Joseph K. Pickrell,et al.  DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines , 2011, Genome Biology.

[11]  A. Whittemore,et al.  A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24 , 2010, Nature Genetics.

[12]  A. Whittemore,et al.  Common variants at 19p13 are associated with susceptibility to ovarian cancer , 2010, Nature Genetics.

[13]  Ie-Ming Shih,et al.  The Origin and Pathogenesis of Epithelial Ovarian Cancer: A Proposed Unifying Theory , 2010, The American journal of surgical pathology.

[14]  C. Gilks Molecular Abnormalities in Ovarian Cancer Subtypes Other than High-Grade Serous Carcinoma , 2009, Journal of oncology.

[15]  A. Whittemore,et al.  A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2 , 2009, Nature Genetics.

[16]  S. Leung,et al.  Ovarian Carcinoma Subtypes Are Different Diseases: Implications for Biomarker Studies , 2008, PLoS medicine.

[17]  Simon Kasif,et al.  Genomewide Analysis of PRC1 and PRC2 Occupancy Identifies Two Classes of Bivalent Domains , 2008, PLoS genetics.

[18]  J. Carpten,et al.  Evidence for two independent prostate cancer risk–associated loci in the HNF1B gene at 17q12 , 2008, Nature Genetics.

[19]  W. Willett,et al.  Multiple loci identified in a genome-wide association study of prostate cancer , 2008, Nature Genetics.

[20]  E. Halperin,et al.  Estimating Local Ancestry in Admixed Populations , 2022 .

[21]  D. Gudbjartsson,et al.  Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes , 2007, Nature Genetics.

[22]  Kristin G Ardlie,et al.  Evaluation of Common Variants in the Six Known Maturity-Onset Diabetes of the Young (MODY) Genes for Association With Type 2 Diabetes , 2007, Diabetes.

[23]  R. Drapkin,et al.  The distal fallopian tube: a new model for pelvic serous carcinogenesis , 2007, Current opinion in obstetrics & gynecology.

[24]  P. Laird,et al.  Epigenetic stem cell signature in cancer , 2007, Nature Genetics.

[25]  D. Easton,et al.  Risk prediction models for familial breast cancer. , 2006, Future oncology.

[26]  T. Seidal,et al.  Clinical and biological characteristics of clear cell carcinomas of the ovary in FIGO stages I-II. , 2005, International journal of oncology.

[27]  E. Negri,et al.  A pooled analysis of case-control studies of thyroid cancer¶ III. Oral contraceptives, menopausal replacement therapy and other female hormones , 1999, Cancer Causes & Control.

[28]  Tsutomu Ohta,et al.  Expression profiling in ovarian clear cell carcinoma: identification of hepatocyte nuclear factor-1 beta as a molecular marker and a possible molecular target for therapy of ovarian clear cell carcinoma. , 2003, The American journal of pathology.

[29]  Daniel O. Stram,et al.  Modeling and E-M Estimation of Haplotype-Specific Relative Risks from Genotype Data for a Case-Control Study of Unrelated Individuals , 2003, Human Heredity.

[30]  J. Kaprio,et al.  Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. , 2000, The New England journal of medicine.

[31]  G. Bell,et al.  Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. , 1997, Nature genetics.

[32]  H. Risch,et al.  Differences in risk factors for epithelial ovarian cancer by histologic type. Results of a case-control study. , 1996, American journal of epidemiology.

[33]  R. Sankila,et al.  Cancer incidence in the first-degree relatives of ovarian cancer patients. , 1996, British Journal of Cancer.