Taste processing in Drosophila larvae

The sense of taste allows animals to detect chemical substances in their environment to initiate appropriate behaviors: to find food or a mate, to avoid hostile environments and predators. Drosophila larvae are a promising model organism to study gustation. Their simple nervous system triggers stereotypic behavioral responses, and the coding of taste can be studied by genetic tools at the single cell level. This review briefly summarizes recent progress on how taste information is sensed and processed by larval cephalic and pharyngeal sense organs. The focus lies on several studies, which revealed cellular and molecular mechanisms required to process sugar, salt, and bitter substances.

[1]  J. Carlson,et al.  Candidate ionotropic taste receptors in the Drosophila larva , 2015, Proceedings of the National Academy of Sciences.

[2]  T. Tanimura,et al.  Learning the specific quality of taste reinforcement in larval Drosophila , 2015, eLife.

[3]  Marc Gershow,et al.  Sensory determinants of behavioral dynamics in Drosophila thermotaxis , 2014, Proceedings of the National Academy of Sciences.

[4]  L. Lavis,et al.  Evolved differences in larval social behavior mediated by novel pheromones , 2014, eLife.

[5]  S. Dupas,et al.  High-NaCl Perception in Drosophila melanogaster , 2014, The Journal of Neuroscience.

[6]  B. Gerber,et al.  Bitter-sweet processing in larval Drosophila. , 2014, Chemical senses.

[7]  J. Pin,et al.  Sensing of Amino Acids in a Dopaminergic Circuitry Promotes Rejection of an Incomplete Diet in Drosophila , 2014, Cell.

[8]  Andreas S. Thum,et al.  The neuronal and molecular basis of quinine-dependent bitter taste signaling in Drosophila larvae , 2014, Front. Behav. Neurosci..

[9]  R. Dukas,et al.  Food selection in larval fruit flies: dynamics and effects on larval development , 2013, Naturwissenschaften.

[10]  T. Miyamoto,et al.  The Molecular Basis of Sugar Sensing in Drosophila Larvae , 2013, Current Biology.

[11]  C. Montell,et al.  The Molecular Basis for Attractive Salt-Taste Coding in Drosophila , 2013, Science.

[12]  C. Montell,et al.  Drosophila TRP channels and animal behavior. , 2013, Life sciences.

[13]  Andreas S. Thum,et al.  Nutritional value-dependent and nutritional value-independent effects on Drosophila melanogaster larval behavior. , 2012, Chemical senses.

[14]  J. Piškur,et al.  Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development , 2012 .

[15]  B. Gerber,et al.  Behavioural Analyses of Quinine Processing in Choice, Feeding and Learning of Larval Drosophila , 2012, PloS one.

[16]  J. Kwon,et al.  Heterogeneous Expression of Drosophila Gustatory Receptors in Enteroendocrine Cells , 2011, PloS one.

[17]  John R. Carlson,et al.  Molecular and Cellular Organization of the Taste System in the Drosophila Larva , 2011, The Journal of Neuroscience.

[18]  B. Webb,et al.  Dietary Salt Levels Affect Salt Preference and Learning in Larval Drosophila , 2011, PloS one.

[19]  John R. Carlson,et al.  The Molecular and Cellular Basis of Bitter Taste in Drosophila , 2011, Neuron.

[20]  T. Gibson,et al.  Ancient Protostome Origin of Chemosensory Ionotropic Glutamate Receptors and the Evolution of Insect Taste and Olfaction , 2010, PLoS genetics.

[21]  Zijing Chen,et al.  The Amiloride-Sensitive Epithelial Na+ Channel PPK28 Is Essential for Drosophila Gustatory Water Reception , 2010, The Journal of Neuroscience.

[22]  Richard Y. Hwang,et al.  Pickpocket Is a DEG/ENaC Protein Required for Mechanical Nociception in Drosophila Larvae , 2010, Current Biology.

[23]  L. Vosshall,et al.  Variant Ionotropic Glutamate Receptors as Chemosensory Receptors in Drosophila , 2009, Cell.

[24]  A. Fiala,et al.  Salt Processing in Larval Drosophila: Choice, Feeding, and Learning Shift from Appetitive to Aversive in a Concentration-Dependent Way , 2008, Chemical senses.

[25]  B. Gerber,et al.  Behavioral Analyses of Sugar Processing in Choice, Feeding, and Learning in Larval Drosophila , 2008, Chemical senses.

[26]  Andrew T Sornborger,et al.  Drosophila TRPA channel modulates sugar-stimulated neural excitation, avoidance and social response , 2008, Nature Neuroscience.

[27]  H. Heinzel,et al.  Anatomy of the stomatogastric nervous system associated with the foregut in Drosophila melanogaster and Calliphora vicina third instar larvae , 2008, Journal of morphology.

[28]  H. Amrein,et al.  Atypical expression of Drosophila gustatory receptor genes in sensory and central neurons , 2008, The Journal of comparative neurology.

[29]  M. Welsh,et al.  Drosophila hygrosensation requires the TRP channels water witch and nanchung , 2007, Nature.

[30]  J. Carlson,et al.  Two Gr Genes Underlie Sugar Reception in Drosophila , 2007, Neuron.

[31]  H. Amrein,et al.  Sugar Receptors in Drosophila , 2007, Current Biology.

[32]  A. Patapoutian,et al.  From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs , 2007, Current Opinion in Neurobiology.

[33]  R. Stocker,et al.  Architecture of the primary taste center of Drosophila melanogaster larvae , 2007, The Journal of comparative neurology.

[34]  John R. Carlson,et al.  The molecular basis of CO2 reception in Drosophila , 2007, Proceedings of the National Academy of Sciences.

[35]  Jayaram Chandrashekar,et al.  The cells and logic for mammalian sour taste detection , 2006, Nature.

[36]  Michael C. Wendl,et al.  Argonaute—a database for gene regulation by mammalian microRNAs , 2005, BMC Bioinformatics.

[37]  Leslie B. Vosshall,et al.  Chemotaxis Behavior Mediated by Single Larval Olfactory Neurons in Drosophila , 2005, Current Biology.

[38]  Gregory S.X.E. Jefferis,et al.  Glomerular Maps without Cellular Redundancy at Successive Levels of the Drosophila Larval Olfactory Circuit , 2005, Current Biology.

[39]  John R. Carlson,et al.  The Molecular Basis of Odor Coding in the Drosophila Larva , 2005, Neuron.

[40]  Kristin Scott,et al.  Taste Representations in the Drosophila Brain , 2004, Cell.

[41]  John R Carlson,et al.  The Molecular Basis of Odor Coding in the Drosophila Antenna , 2004, Cell.

[42]  R. Stocker,et al.  Integration of complex larval chemosensory organs into the adult nervous system of Drosophila , 2004, Development.

[43]  H. Amrein,et al.  A Putative Drosophila Pheromone Receptor Expressed in Male-Specific Taste Neurons Is Required for Efficient Courtship , 2003, Neuron.

[44]  W. A. Johnson,et al.  Contribution of Drosophila DEG/ENaC Genes to Salt Taste , 2003, Neuron.

[45]  W. A. Johnson,et al.  Drosophila DEG/ENaC pickpocket genes are expressed in the tracheal system, where they may be involved in liquid clearance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  R. Stocker,et al.  Adult‐like complexity of the larval antennal lobe of D. melanogaster despite markedly low numbers of odorant receptor neurons , 2002, The Journal of comparative neurology.

[47]  Andrey Rzhetsky,et al.  A Chemosensory Gene Family Encoding Candidate Gustatory and Olfactory Receptors in Drosophila , 2001, Cell.

[48]  J. Carlson,et al.  Candidate taste receptors in Drosophila. , 2000, Science.

[49]  P. Guerin,et al.  Neurophysiological and behavioural evidence for an olfactory function for the dorsal organ and a gustatory one for the terminal organ in Drosophila melanogaster larvae. , 2000, Journal of insect physiology.

[50]  R. Stocker,et al.  Smell and Taste Perception in Drosophila melanogasterLarva: Toxin Expression Studies in Chemosensory Neurons , 1999, The Journal of Neuroscience.

[51]  R. Stocker,et al.  Larval chemosensory projections and invasion of adult afferents in the antennal lobe of Drosophila. , 1997, Journal of neurobiology.

[52]  M. Sokolowski,et al.  Drosophila larval foraging behaviour: Developmental stages , 1984, Animal Behaviour.

[53]  C. H. Green,et al.  Organization and patterns of inter- and intraspecific variation in the behaviour of Drosophila larvae , 1983, Animal Behaviour.

[54]  B. Shorrocks,et al.  Breeding site specificity in the domestic species of Drosophila , 1977, Oecologia.

[55]  A. Gelperin,et al.  Hyperphagia in the Blowfly , 1967 .

[56]  D. M. Cooper FOOD PREFERENCES OF LARVAL AND ADULT DROSOPHILA , 1960 .

[57]  C. Montell,et al.  Evolutionarily conserved, multitasking TRP channels: lessons from worms and flies. , 2014, Handbook of experimental pharmacology.

[58]  Y. Ben-Shahar Sensory functions for degenerin/epithelial sodium channels (DEG/ENaC). , 2011, Advances in genetics.

[59]  Bertram Gerber,et al.  The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. , 2007, Chemical senses.

[60]  R. Axtell,et al.  Fine structure of the terminal organ of the house fly larva, Musca domestica L. , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[61]  R. Axtell,et al.  Fine structure of the dorsal organ of the house fly larva, Musca domestica L. , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[62]  D. Finnegan Drosophila: A laboratory handbook , 1990 .

[63]  R. N. Singh,et al.  Fine structure of the sensory organs of Drosophila melanogaster Meigen larva (Diptera : Drosophilidae) , 1984 .

[64]  Yuzo Miyakawa Behavioural evidence for the existence of sugar, salt and amino acid taste receptor cells and some of their properties in Drosophila larvae , 1982 .

[65]  R. Mccance,et al.  The available carbohydrate of fruits: Determination of glucose, fructose, sucrose and starch. , 1935, The Biochemical journal.

[66]  Massimo Pandolfo,et al.  Molecular Basis , 2022 .

[67]  Maria B Sokolowskp Foraging Strategies of Drosophila melanogaster : A Chromosomal Analysis , 2022 .