Fluorogenic DNAzyme probes as bacterial indicators.

[1]  Kiyohito Yagi,et al.  Applications of whole-cell bacterial sensors in biotechnology and environmental science , 2007, Applied Microbiology and Biotechnology.

[2]  Juewen Liu,et al.  Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. , 2004, Journal of the American Chemical Society.

[3]  Yingfu Li,et al.  An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. , 2003, Journal of the American Chemical Society.

[4]  Olivier Lazcka,et al.  Pathogen detection: a perspective of traditional methods and biosensors. , 2007, Biosensors & bioelectronics.

[5]  Xiaohong Fang,et al.  Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. , 2010, Accounts of chemical research.

[6]  D. Chinnapen,et al.  A deoxyribozyme that harnesses light to repair thymine dimers in DNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Entrapment of fluorescence signaling DNA enzymes in sol-gel-derived materials for metal ion sensing. , 2007, Analytical chemistry.

[8]  Revitalization of six abandoned catalytic DNA species reveals a common three-way junction framework and diverse catalytic cores. , 2006, Journal of molecular biology.

[9]  J. Szostak,et al.  A DNA metalloenzyme with DNA ligase activity , 1995, Nature.

[10]  Yingfu Li,et al.  Nucleic acid aptamers and enzymes as sensors. , 2006, Current opinion in chemical biology.

[11]  R. Levine,et al.  DNA computing circuits using libraries of DNAzyme subunits. , 2010, Nature nanotechnology.

[12]  M. M. A. and,et al.  Colorimetric Sensing by Using Allosteric-DNAzyme-Coupled Rolling Circle Amplification and a Peptide Nucleic Acid–Organic Dye Probe† , 2009 .

[13]  Yingfu Li,et al.  Characterization of a catalytically efficient acidic RNA-cleaving deoxyribozyme , 2006, Nucleic Acids Research.

[14]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[15]  Yingfu Li,et al.  Catalysis and Rational Engineering of trans‐Acting pH6DZ1, an RNA‐Cleaving and Fluorescence‐Signaling Deoxyribozyme with a Four‐Way Junction Structure , 2006, Chembiochem : a European journal of chemical biology.

[16]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[17]  S. Silverman,et al.  DNA as a versatile chemical component for catalysis, encoding, and stereocontrol. , 2010, Angewandte Chemie.

[18]  Yingfu Li,et al.  Characterizing the secondary structure and identifying functionally essential nucleotides of pH6DZ1, a fluorescence-signaling and RNA-cleaving deoxyribozyme. , 2005, Biochemistry.

[19]  M. Griffiths,et al.  Prevalence, detection and control of Cryptosporidium parvum in food. , 1996, International journal of food microbiology.

[20]  Yi Lu,et al.  Rational design of "turn-on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. , 2007, Angewandte Chemie.

[21]  Marcel Hollenstein,et al.  A highly selective DNAzyme sensor for mercuric ions. , 2008, Angewandte Chemie.

[22]  M. Ali,et al.  Characterization of pH3DZ1 : An RNA-cleaving deoxyribozyme with optimal activity at pH 3 , 2007 .

[23]  Douglas R Call,et al.  Challenges and Opportunities for Pathogen Detection Using DNA Microarrays , 2005, Critical reviews in microbiology.

[24]  Ronald R. Breaker,et al.  Kinetics of RNA Degradation by Specific Base Catalysis of Transesterification Involving the 2‘-Hydroxyl Group , 1999 .

[25]  Scott K. Silverman DNA – eine vielseitige chemische Verbindung für die Katalyse, zur Kodierung und zur Stereokontrolle† , 2010 .

[26]  Yingfu Li,et al.  Evolution of high-branching deoxyribozymes from a catalytic DNA with a three-way junction. , 2006, Chemistry & biology.

[27]  Anthony Turner,et al.  Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. , 2008 .

[28]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[29]  G. Joyce Vierzig Jahre Evolution im Reagenzglas , 2007 .

[30]  R R Breaker,et al.  A DNA enzyme that cleaves RNA. , 1994, Chemistry & biology.

[31]  G. F. Joyce,et al.  Forty years of in vitro evolution. , 2007, Angewandte Chemie.

[32]  Khalil Arshak,et al.  An overview of foodborne pathogen detection: in the perspective of biosensors. , 2010, Biotechnology advances.

[33]  Yingfu Li,et al.  Simple Fluorescent Sensors Engineered with Catalytic DNA ‘MgZ’ Based on a Non-Classic Allosteric Design , 2007, PloS one.

[34]  Juewen Liu,et al.  Functional nucleic acid sensors. , 2009, Chemical reviews.

[35]  Yingfu Li,et al.  Biologically inspired synthetic enzymes made from DNA. , 2009, Chemistry & biology.

[36]  Yingfu Li,et al.  Quenching of fluorophore-labeled DNA oligonucleotides by divalent metal ions: implications for selection, design, and applications of signaling aptamers and signaling deoxyribozymes. , 2006, Journal of the American Chemical Society.

[37]  M. Ali,et al.  Colorimetric sensing by using allosteric-DNAzyme-coupled rolling circle amplification and a peptide nucleic acid-organic dye probe. , 2009, Angewandte Chemie.

[38]  W. S. Otwell,et al.  Pathogens in raw foods: what the salad bar can learn from the raw bar. , 2009, Current opinion in biotechnology.