Generalization of the Schott energy in electrodynamic radiation theory

We discuss the origin of the Schott energy in the Abraham-Lorentz version of electrodynamic radiation theory and how it can be used to explain some apparent paradoxes. We also derive the generalization of this quantity for the Ford-O’Connell equation, which has the merit of being derived exactly from a microscopic Hamiltonian for an electron with structure and has been shown to be free of the problems associated with the Abraham-Lorentz theory. We emphasize that the instantaneous power supplied by the applied force not only gives rise to radiation (acceleration fields), but it can change the kinetic energy of the electron and change the Schott energy of the velocity fields. The important role played by boundary conditions is noted.