High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect.

A high-sensitivity temperature sensor based on the enhanced Goos-Hänchen effect in a symmetrical metal-cladding waveguide is theoretically proposed and experimentally demonstrated. Owing to the high sensitivity of the ultrahigh-order modes, any minute variation of the refractive index and thickness in the guiding layer induced by the thermo-optic and thermal expansion effects will easily give rise to a dramatic change in the position of the reflected light. In our experiment, a series of Goos-Hänchen shifts are measured at temperatures varying from 50.0 °C to 51.2 °C with a step of 0.2 °C. The sensor exhibits a good linearity and a high resolution of approximately 5×10(-3) °C. Moreover, there is no need to employ any complicated optical equipment and servo techniques, since our transduction scheme is irrelevant to the light source fluctuation.

[1]  F. Goos,et al.  Ein neuer und fundamentaler Versuch zur Totalreflexion , 1947 .

[2]  K. Artmann Berechnung der Seitenversetzung des totalreflektierten Strahles , 1948 .

[3]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[4]  J. Birman,et al.  Prediction of a Resonance-Enhanced Laser-Beam Displacement at Total Internal Reflection in Semiconductors , 1983 .

[5]  P. Leiderer,et al.  Nanosecond time‐resolved study of pulsed laser ablation in the monolayer regime , 1991 .

[6]  G. Ghosh,et al.  Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. , 1997, Applied optics.

[7]  Michael A. Davis,et al.  Fiber grating sensors , 1997 .

[8]  Lai Hm,et al.  Energy-flux pattern in the goos-Hanchen effect , 2000 .

[9]  Din Ping Tsai,et al.  Surface plasmon resonance monitoring of temperature via phase measurement , 2004 .

[10]  Honggen Li,et al.  Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide , 2004 .

[11]  Chun-Fang Li,et al.  Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Honggen Li,et al.  Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides. , 2007, Optics letters.

[13]  Wen-Chi Lin,et al.  Optical temperature sensing based on the Goos-Hänchen effect. , 2007, Applied optics.

[14]  Kwan Seob Park,et al.  Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. , 2008, Optics letters.

[15]  Yi Wang,et al.  Oscillating wave sensor based on the Goos-Hänchen effect , 2008 .

[16]  Xi Chen,et al.  Giant bistable lateral shift owing to surface-plasmon excitation in Kretschmann configuration with a Kerr nonlinear dielectric. , 2008, Optics letters.

[17]  Yuze Sun,et al.  Sensitive optical biosensors for unlabeled targets: a review. , 2008, Analytica chimica acta.

[18]  Lei Gao,et al.  Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites. , 2009, Optics express.

[19]  Tony Jun Huang,et al.  An in-plane, variable optical attenuator using a fluid-based tunable reflective interface , 2009 .

[20]  F. Warken,et al.  Ultra-high-Q tunable whispering-gallery-mode microresonator , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[21]  Hitoshi Kawashima,et al.  Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides. , 2010, Optics express.

[22]  Xinyong Dong,et al.  High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror. , 2011, Optics letters.

[23]  Z. Cao,et al.  Reflection-type space-division optical switch based on the electrically tuned Goos–Hänchen effect , 2013 .