Investigating the effect of nanolime treatment on the drying kinetics of Clipsham limestone

[1]  H. Viles,et al.  Direct monitoring of drying kinetics of building limestones using cavity ring-down spectroscopy , 2023, Construction and Building Materials.

[2]  H. Viles,et al.  Determining Water Transport Kinetics in Limestone by Dual-Wavelength Cavity Ring-Down Spectroscopy , 2022, Analytical chemistry.

[3]  C. Rodriguez-Navarro,et al.  Consolidation of clay-rich earthen building materials: A comparative study at the alhambra fortress (Spain) , 2022, Journal of Building Engineering.

[4]  V. Daniele,et al.  New nanolimes for eco-friendly and customized treatments to preserve the biocalcarenites of the “Valley of Temples” of Agrigento , 2021, Construction and Building Materials.

[5]  M. Camaiti,et al.  Nano Ca(OH)2: A review on synthesis, properties and applications , 2021, Journal of Cultural Heritage.

[6]  J. S. Pozo-Antonio,et al.  Influence of application method and number of applications of nanolime on the effectiveness of the Doulting limestone treatments , 2021 .

[7]  A. E. Charola,et al.  Preliminary Investigations of Compatible Nanolime Treatments on Indiana Limestone and Weathered Marble Stone , 2020, International Journal of Architectural Heritage.

[8]  Jorge Otero,et al.  Application of Nanolimes for the Consolidation of Limestone from the Medieval Bishop's Palace, Lincoln, UK , 2020 .

[9]  A. E. Charola,et al.  Influence of different types of solvent on the effectiveness of nanolime treatments on highly porous mortar substrates , 2020 .

[10]  L. Mancini,et al.  Synthetic calcium carbonate improves the effectiveness of treatments with nanolime to contrast decay in highly porous limestone , 2019, Scientific Reports.

[11]  R. Ball,et al.  Effectiveness of Nanolime as a Stone Consolidant: A 4-Year Study of Six Common UK Limestones , 2019, Materials.

[12]  P. Baglioni,et al.  The carbonation kinetics of calcium hydroxide nanoparticles: A Boundary Nucleation and Growth description. , 2019, Journal of colloid and interface science.

[13]  A. E. Charola,et al.  Influence of substrate pore structure and nanolime particle size on the effectiveness of nanolime treatments , 2019, Construction and Building Materials.

[14]  J. S. Pozo-Antonio,et al.  Nanolime- and nanosilica-based consolidants applied on heated granite and limestone: Effectiveness and durability , 2019, Construction and Building Materials.

[15]  P. Ortiz,et al.  Nanolimes doped with quantum dots for stone consolidation assessment , 2019, Construction and Building Materials.

[16]  Miloš Drdácký,et al.  Nanomaterials in Architecture and Art Conservation , 2018 .

[17]  A. E. Charola,et al.  Green approach for an eco-compatible consolidation of the Agrigento biocalcarenites surface , 2018, Construction and Building Materials.

[18]  Giuliana Taglieri,et al.  Nano Ca(OH)2 synthesis using a cost-effective and innovative method: Reactivity study , 2017 .

[19]  A. E. Charola,et al.  The biocalcarenite stone of Agrigento (Italy): Preliminary investigations of compatible nanolime treatments , 2017 .

[20]  C. Rodriguez-Navarro,et al.  Nanolimes: from synthesis to application , 2017 .

[21]  R. Hees,et al.  Evaluation of the effectiveness and compatibility of nanolime consolidants with improved properties , 2017 .

[22]  Zuzana Slížková,et al.  Modifying the consolidation depth of nanolime on Maastricht limestone , 2017 .

[23]  K. Malek,et al.  Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials. , 2016, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[24]  C. Rodriguez-Navarro,et al.  Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: implications in heritage conservation , 2016 .

[25]  Rosário Veiga,et al.  Optimization of nanolime solvent for the consolidation of coarse porous limestone , 2016 .

[26]  R.P.J. van Hees,et al.  Effect of solvent on nanolime transport within limestone: How to improve in-depth deposition , 2016 .

[27]  C. Rodriguez-Navarro,et al.  Kinetics and Mechanism of Calcium Hydroxide Conversion into Calcium Alkoxides: Implications in Heritage Conservation Using Nanolimes. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[28]  Rosário Veiga,et al.  Understanding the transport of nanolime consolidants within Maastricht limestone , 2016 .

[29]  Anoop Kumar Mukhopadhyay,et al.  Synthesis of Nano Calcium Hydroxide in Aqueous Medium , 2016 .

[30]  R. Ball,et al.  Environmental performance of nano-structured Ca(OH)2/TiO2 photocatalytic coatings for buildings , 2015 .

[31]  Rafael Fort,et al.  Lime mortar consolidation with nanostructured calcium hydroxide dispersions: the efficacy of different consolidating products for heritage conservation , 2015 .

[32]  S. A. Giner,et al.  Arrhenius activation energy for water diffusion during drying of tomato leathers: The concept of characteristic product temperature , 2015 .

[33]  Piergiorgio Aloise,et al.  Efficacy of nanolime in restoration procedures of salt weathered limestone rock , 2014 .

[34]  Marco Malagodi,et al.  Nanoparticles for conservation of bio-calcarenite stone , 2014 .

[35]  C. Rodriguez-Navarro,et al.  Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[36]  Paul D'Armada,et al.  Nano-Lime for Consolidation of Plaster and Stone , 2012 .

[37]  B. Mobasher,et al.  Experimental observations of early-age drying of Portland cement paste under low-pressure conditions , 2011 .

[38]  W. Mokrzycki,et al.  Color difference ΔE : a survey , 2011 .

[39]  B. Christa From modernism to post-modernism , 2010 .

[40]  Rafael Fort,et al.  Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques , 2010 .

[41]  Raimondo Quaresima,et al.  The nanolimes in Cultural Heritage conservation: Characterisation and analysis of the carbonatation process , 2008 .

[42]  Grant A. D. Ritchie,et al.  4 Cavity ring-down and cavity enhanced spectroscopy using diode lasers , 2005 .

[43]  G. Berden,et al.  Cavity ring-down spectroscopy: Experimental schemes and applications , 2000 .

[44]  Piero Baglioni,et al.  A New Method for Consolidating Wall Paintings Based on Dispersions of Lime in Alcohol , 2000 .

[45]  Daniele Romanini,et al.  Diode laser cavity ring down spectroscopy , 1997 .

[46]  J. Dickson,et al.  A syndepositional meteoric phreatic lens in the Middle Jurassic Lincolnshire Limestone, England, U.K. , 1989 .

[47]  A. O’Keefe,et al.  Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources , 1988 .

[48]  N. Hackerman,et al.  Adsorption Thermodynamics of the Interaction of Water and Various Silica Powders , 1966 .

[49]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[50]  S. Martínez-Ramírez,et al.  New approach to nanolime synthesis at ambient temperature , 2018, SN Applied Sciences.

[51]  A. Gualtieri,et al.  Kinetic study of the drying process of clay bricks , 2015, Journal of Thermal Analysis and Calorimetry.

[52]  M. J. Varas-Muriel,et al.  CONSOLIDATION OF DETERIORATED CARBONATE STONES WITH , 2014 .

[53]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[54]  Carlo A. Furia,et al.  User manual , 2023, International Transport Forum Policy Papers.

[55]  P. Smith Evaporation and Drying , 2011 .

[56]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[57]  Michael N. R. Ashfold,et al.  Cavity ring-down spectroscopy , 1998 .

[58]  George W. Scherer,et al.  Theory of Drying , 1990 .

[59]  M. Ashton,et al.  The Stratigraphy of the Lincolnshire Limestone Formation (Bajocian) in Lincolnshire and Rutland (Leicestershire) , 1980 .

[60]  R. J. Schaffer,et al.  The weathering, preservation and restoration of stone buildings , 1955 .