Model‐Based Uncertainty Quantification for the Product Properties of Lithium‐Ion Batteries

[1]  René Schenkendorf,et al.  Efficient Global Sensitivity Analysis of 3D Multiphysics Model for Li-Ion Batteries , 2018 .

[2]  P. Shearing,et al.  Particle Size Polydispersity in Li-Ion Batteries , 2014 .

[3]  D. Sauer,et al.  Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery II. Model Validation , 2015 .

[4]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[5]  Richard D. Braatz,et al.  Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models , 2011 .

[6]  Shengbo Zhang The effect of the charging protocol on the cycle life of a Li-ion battery , 2006 .

[7]  Wolfgang Haselrieder,et al.  Influence of Convective Drying Parameters on Electrode Performance and Physical Electrode Properties , 2015 .

[8]  Charles Delacourt,et al.  Mathematical Modeling of Commercial LiFePO4 Electrodes Based on Variable Solid-State Diffusivity , 2011 .

[9]  Richard D. Braatz,et al.  Review—Dynamic Models of Li-Ion Batteries for Diagnosis and Operation: A Review and Perspective , 2018 .

[10]  K. Sundmacher,et al.  Understanding the dynamic behaviour of direct methanol fuel cells: Response to step changes in cell current , 2007 .

[11]  Andreas Jossen,et al.  Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction , 2017 .

[12]  Shriram Santhanagopalan,et al.  Quantifying Cell-to-Cell Variations in Lithium Ion Batteries , 2012 .

[13]  R. Rocheleau,et al.  Study of low concentration CO poisoning of Pt anode in a proton exchange membrane fuel cell using spatial electrochemical impedance spectroscopy , 2014 .

[14]  R. Rocheleau,et al.  Spatial proton exchange membrane fuel cell performance under carbon monoxide poisoning at a low concentration using a segmented cell system , 2012 .

[15]  Ulrike Krewer,et al.  Simulation-Supported Analysis of Calendering Impacts on the Performance of Lithium-Ion-Batteries , 2016 .

[16]  Simon F. Schuster,et al.  Lithium-ion cell-to-cell variation during battery electric vehicle operation , 2015 .

[17]  Richard D. Braatz,et al.  Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective , 2010 .

[18]  L. Guzzella,et al.  Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell , 2010 .

[19]  A. Sastry,et al.  Compression of Packed Particulate Systems: Simulations and Experiments in Graphitic Li-ion Anodes , 2006 .

[20]  W. D. Widanage,et al.  A Study of Cell-to-Cell Interactions and Degradation in Parallel Strings: Implications for the Battery Management System , 2016 .

[21]  Ulrike Krewer,et al.  Simulating the Impact of Particle Size Distribution on the Performance of Graphite Electrodes in Lithium‐Ion Batteries , 2016 .

[22]  J. St-Pierre,et al.  Study of the aromatic hydrocarbons poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system , 2016 .

[23]  Matthieu Dubarry,et al.  Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations , 2011 .

[24]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[25]  Matthieu Dubarry,et al.  Cell-balancing currents in parallel strings of a battery system , 2016 .

[26]  Zhenhua Lin,et al.  Restrictions of point estimate methods and remedy , 2013, Reliab. Eng. Syst. Saf..

[27]  Matthieu Dubarry,et al.  From single cell model to battery pack simulation for Li-ion batteries , 2009 .

[28]  Kurt Maute,et al.  On Uncertainty Quantification of Lithium-ion Batteries: Application to an LiC$_6$/LiCoO$_2$ cell , 2015, 1505.07776.

[29]  S. Joo,et al.  Calendering effect on the electrochemical performances of the thick Li-ion battery electrodes using a three dimensional Ni alloy foam current collector , 2015 .

[30]  Wolfgang Haselrieder,et al.  Capacity Distribution of Large Lithium‐Ion Battery Pouch Cells in Context with Pilot Production Processes , 2020, Energy Technology.

[31]  A. V. Bommel,et al.  Effect of Calendering LiFePO4 Electrodes , 2013 .

[32]  Shriram Santhanagopalan,et al.  Modeling Parametric Uncertainty Using Polynomial Chaos Theory , 2007 .

[33]  Arno Kwade,et al.  The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties , 2016 .

[34]  Wolfgang Haselrieder,et al.  Impact of the Calendering Process on the Interfacial Structure and the Related Electrochemical Performance of Secondary Lithium-Ion Batteries , 2013 .

[35]  Victor M. Zavala,et al.  A Computational Framework for Identifiability and Ill-Conditioning Analysis of Lithium-Ion Battery Models , 2016 .

[36]  Giorgio Rizzoni,et al.  Design and parametrization analysis of a reduced-order electrochemical model of graphite/LiFePO4 cells for SOC/SOH estimation , 2013 .

[37]  I. Bloom,et al.  The effect of charging rate on the graphite electrode of commercial lithium-ion cells: A post-mortem study , 2016 .

[38]  Xiangyun Song,et al.  Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode , 2012 .

[39]  Hosam K. Fathy,et al.  Maximizing Parameter Identifiability of a Combined Thermal and Electrochemical Battery Model Via Periodic Current Input Optimization , 2017 .

[40]  E. Rosenblueth Point estimates for probability moments. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Fowler,et al.  A rapid estimation and sensitivity analysis of parameters describing the behavior of commercial Li-ion batteries including thermal analysis , 2014 .

[42]  P. Mukherjee,et al.  Microstructure Evolution in Lithium-Ion Battery Electrode Processing , 2014 .

[43]  Wolfgang Haselrieder,et al.  Intensive Dry and Wet Mixing Influencing the Structural and Electrochemical Properties of Secondary Lithium-Ion Battery Cathodes , 2013 .

[44]  U. Schröder,et al.  Electrode‐Resolved Monitoring of the Ageing of Large‐Scale Lithium‐Ion Cells by using Electrochemical Impedance Spectroscopy , 2017 .

[45]  Robert J. Kee,et al.  Thermodynamically consistent modeling of elementary electrochemistry in lithium-ion batteries , 2010 .

[46]  S. Raël,et al.  Including double-layer capacitance in lithium-ion battery mathematical models , 2014 .

[47]  G. W. Tyler Numerical Integration of Functions of Several Variables , 1953, Canadian Journal of Mathematics.

[48]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[49]  Julien Bernard,et al.  Parameter sensitivity analysis of a simplified electrochemical and thermal model for Li-ion batteries aging , 2016 .

[50]  Ken Darcovich,et al.  Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules , 2012 .

[51]  A. Sastry,et al.  Particle Compression and Conductivity in Li-Ion Anodes with Graphite Additives , 2004 .

[52]  Wolfgang Haselrieder,et al.  Discontinuous and Continuous Processing of Low-Solvent Battery Slurries for Lithium Nickel Cobalt Manganese Oxide Electrodes , 2015, Journal of Electronic Materials.