Nonparametric tests for pathwise properties of semimartingales

We propose two nonparametric tests for investigating the pathwise properties of a signal modeled as the sum of a L\'evy process and a Brownian semimartingale. Using a nonparametric threshold estimator for the continuous component of the quadratic variation, we design a test for the presence of a continuous martingale component in the process and a test for establishing whether the jumps have finite or infinite variation, based on observations on a discrete time grid. We evaluate the performance of our tests using simulations of various stochastic models and use the tests to investigate the fine structure of the DM/USD exchange rate fluctuations and SPX futures prices. In both cases, our tests reveal the presence of a non-zero Brownian component and a finite variation jump component.

[1]  Philip Protter,et al.  The Euler scheme for Lévy driven stochastic differential equations , 1997 .

[2]  Neil Shephard,et al.  Limit theorems for multipower variation in the presence of jumps , 2006 .

[3]  P. Protter Stochastic integration and differential equations , 1990 .

[4]  Yacine Aït-Sahalia,et al.  Disentangling Volatility from Jumps , 2003 .

[5]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[6]  Jean Jacod,et al.  Testing whether jumps have finite or infinite activity , 2011, 1211.5219.

[7]  Jean Jacod,et al.  Testing for Jumps in a Discretely Observed Process , 2007 .

[8]  N. Shephard,et al.  Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation , 2005 .

[9]  G. Kallianpur Stochastic differential equations and diffusion processes , 1981 .

[10]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[11]  J. Doob Stochastic processes , 1953 .

[12]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[13]  Dilip B. Madan,et al.  Option Pricing, Interest Rates and Risk Management: Purely Discontinuous Asset Price Processes , 2001 .

[14]  P. Carr,et al.  What Type of Process Underlies Options? A Simple Robust Test , 2003 .

[15]  George Tauchen,et al.  Activity Signature Functions for High-Frequency Data Analysis , 2008 .

[16]  C. Mancini Estimation of the Characteristics of the Jumps of a General Poisson-Diffusion Model , 2004 .

[17]  P. Mykland,et al.  Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics , 2008 .

[18]  Andreas E. Kyprianou,et al.  Some remarks on first passage of Levy processes, the American put and pasting principles , 2005 .

[19]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[20]  Michael Sørensen,et al.  Estimating functions for diffusion-type processes , 2012 .

[21]  Cecilia Mancini,et al.  Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps , 2006, math/0607378.

[22]  R. Renò,et al.  Threshold estimation of Markov models with jumps and interest rate modeling , 2011 .

[23]  Jean Jacod,et al.  Estimating the degree of activity of jumps in high frequency data , 2009, 0908.3095.

[24]  Jeannette H. C. Woerner Analyzing the Fine Structure of Continuous Time Stochastic Processes , 2011 .

[25]  Michel Métivier,et al.  Semimartingales: A course on stochastic processes , 1986 .

[26]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[27]  Jean Jacod,et al.  Asymptotic properties of realized power variations and related functionals of semimartingales , 2006, math/0604450.

[28]  P. Protter,et al.  Asymptotic error distributions for the Euler method for stochastic differential equations , 1998 .