²⁰¹Tl⁺-labelled Prussian blue nanoparticles as contrast agents for SPECT scintigraphy.

Prussian blue (PB) and its analogues on the nanometric scale are exciting nano-objects that combine the advantages of molecular-based materials and nanochemistry. Herein, we demonstrate that ultra-small PB nanoparticles of 2-3 nm can be easily labelled with radioactive (201)Tl(+) to obtain new nanoprobes as radiotracers for 201-thallium-based imaging.

[1]  J. Strojek,et al.  In Situ FT-IR/ATR Spectroelectrochemistry of Prussian Blue in the Solid State , 1996 .

[2]  A. Paajanen,et al.  Removal of Radioactive Cesium from Nuclear Waste Solutions with the Transition Metal Hexacyanoferrate Ion Exchanger CsTreat , 2001 .

[3]  G. Girolami,et al.  High-Temperature Molecular Magnets Based on Cyanovanadate Building Blocks: Spontaneous Magnetization at 230 K , 1995, Science.

[4]  R. Sze,et al.  Biofunctionalized gadolinium-containing prussian blue nanoparticles as multimodal molecular imaging agents. , 2014, Bioconjugate chemistry.

[5]  Christian Guerin,et al.  Nanosized heterostructures of Au@Prussian blue analogues: towards multifunctionality at the nanoscale. , 2014, Angewandte Chemie.

[6]  J. Mcrae,et al.  Alterations in tissue distribution of 99mTc-pertechnetate in rats given stannous tin. , 1974, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[7]  K. Hashimoto,et al.  DESIGN OF A NOVEL MAGNET EXHIBITING PHOTOINDUCED MAGNETIC POLE INVERSION BASED ON MOLECULAR FIELD THEORY , 1999 .

[8]  S. Santucci,et al.  Cytotoxicity and Genotoxicity of Ceria Nanoparticles on Different Cell Lines in Vitro , 2013, International journal of molecular sciences.

[9]  D. Amabilino,et al.  Water-soluble gold nanoparticles based on imidazolium gemini amphiphiles incorporating piroxicam , 2014 .

[10]  L. Pérez,et al.  Lysine-based surfactants in nanovesicle formulations: the role of cationic charge position and hydrophobicity in in vitro cytotoxicity and intracellular delivery , 2014, Nanotoxicology.

[11]  M. Vinardell,et al.  Biological safety studies of gemifloxacin mesylate and related substances. , 2013, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[12]  S. Mann,et al.  Morphosynthesis of Molecular Magnetic Materials , 2004 .

[13]  P. A. Haas A REVIEW OF INFORMATION ON FERROCYANIDE SOLIDS FOR REMOVAL OF CESIUM FROM SOLUTIONS , 1993 .

[14]  A. Lascialfari,et al.  Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity. , 2011, Nanoscale.

[15]  R. Koncki Chemical Sensors and Biosensors Based on Prussian Blues , 2002 .

[16]  J. C. Lima,et al.  Substituent effects on the biological properties of Zn-salophen complexes. , 2013, Inorganic chemistry.

[17]  K. Ariga,et al.  Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements. , 2013, Chemistry.

[18]  E. Garnier,et al.  Copper hexacyanoferrates: Preparation, composition and structure. , 1994, Talanta.

[19]  J. Tieman 4 a.m. , 2003 .

[20]  D. Schwarzenbach,et al.  The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O , 1977 .

[21]  I. Castro,et al.  High-Tc molecular-based magnets : a ferromagnetic bimetallic chromium(III)-nickel(II) cyanide with Tc = 90 K , 1992 .

[22]  S. Mann,et al.  Molecule-Based Magnetic Nanoparticles: Synthesis of Cobalt Hexacyanoferrate, Cobalt Pentacyanonitrosylferrate, and Chromium Hexacyanochromate Coordination Polymers in Water-in-Oil Microemulsions , 2002 .

[23]  Y. Yamauchi,et al.  Large Cs adsorption capability of nanostructured Prussian Blue particles with high accessible surface areas , 2012 .

[24]  Y. Yamauchi,et al.  Tailored design of multiple nanoarchitectures in metal-cyanide hybrid coordination polymers. , 2013, Journal of the American Chemical Society.

[25]  Mei Li,et al.  Synthesis of Prussian Blue Nanoparticles and Nanocrystal Superlattices in Reverse Microemulsions , 2000 .

[26]  L Roberts,et al.  Radiation accident grips Goiânia. , 1987, Science.

[27]  K. Wu,et al.  Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. , 2012, Chemical communications.

[28]  Songping D. Huang,et al.  Nanoparticles of the novel coordination polymer KBi(H2O)2[Fe(CN)6]·H2O as a potential contrast agent for computed tomography. , 2011, Inorganic chemistry.

[29]  G. Girolami,et al.  Sol−Gel Synthesis of KVII[CrIII(CN)6]·2H2O: A Crystalline Molecule-Based Magnet with a Magnetic Ordering Temperature above 100 °C , 1999 .

[30]  T. Uemura,et al.  Prussian blue nanoparticles protected by poly(vinylpyrrolidone). , 2003, Journal of the American Chemical Society.

[31]  O. Stéphan,et al.  Core-multishell magnetic coordination nanoparticles: toward multifunctionality on the nanoscale. , 2009, Angewandte Chemie.

[32]  K. Hashimoto,et al.  Electrochemically Tunable Magnetic Phase Transition in a High-Tc Chromium Cyanide Thin Film , 1996, Science.

[33]  Mark A. Griswold,et al.  Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: a new generation of T1-weighted MRI contrast and small molecule delivery agents , 2010 .

[34]  R. Harjula,et al.  Selective removal of cesium from simulated high-level liquid wastes by insoluble ferrocyanides , 1997 .

[35]  M. Verdaguer,et al.  High-Tc Molecular-Based Magnets: Ferrimagnetic Mixed-Valence Chromium(III)-Chromium(II) Cyanides with Tc at 240 and 190 Kelvin , 1993, Science.

[36]  P. Perriat,et al.  Mn(II)-containing coordination nanoparticles as highly efficient T(1) contrast agents for magnetic resonance imaging. , 2014, Chemical communications.

[37]  Yun Lu,et al.  Photoluminescent properties of Prussian Blue (PB) nanoshells and polypyrrole (PPy)/PB core/shell nanoparticles prepared via miniemulsion (periphery) polymerization. , 2011, Chemical communications.

[38]  Xiuli Yue,et al.  Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. , 2012, Chemical communications.

[39]  B. Pitt,et al.  The Extraction of Thallium-201 by the Myocardium , 1977, Circulation.

[40]  A. Lascialfari,et al.  Cyano-bridged coordination polymer nanoparticles with high nuclear relaxivity: toward new contrast agents for MRI. , 2008, Dalton transactions.

[41]  Joel S. Miller,et al.  ENHANCEMENT OF THE MAGNETIC ORDERING TEMPERATURE AND AIR STABILITY OF A MIXED VALENT VANADIUM HEXACYANOCHROMATE(III) MAGNET TO 99 C (372 K) , 1999 .

[42]  W. Wernsdorfer,et al.  Photoinduced superparamagnetism in trimetallic coordination nanoparticles. , 2007, Journal of the American Chemical Society.

[43]  F. Brisset,et al.  Tuning the magnetic anisotropy in coordination nanoparticles: random distribution versus core-shell architecture. , 2012, Chemical communications.

[44]  C. Sangregorio,et al.  Cyano-bridged coordination polymer nanoparticles , 2009 .

[45]  M. Verdaguer,et al.  A room-temperature organometallic magnet based on Prussian blue , 1995, Nature.

[46]  Songping D. Huang,et al.  Biocompatible Prussian blue nanoparticles: Preparation, stability, cytotoxicity, and potential use as an MRI contrast agent , 2010 .

[47]  Haoshen Zhou,et al.  Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability. , 2013, Journal of the American Chemical Society.

[48]  R. Harjula,et al.  Use inorganic ion exchange materials as precoat filters for nuclear waste effluent treatment , 2004 .

[49]  A. Lascialfari,et al.  Investigation on NMR relaxivity of nano-sized cyano-bridged coordination polymers. , 2013, Inorganic chemistry.

[50]  J. Lehto,et al.  Effects of gamma irradiation on cobalt hexacyanoferrate(II) ion exchangers , 1994 .