Quantum state transfer via Bloch oscillations

The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, is a fundamental step in the construction of scalable quantum devices. In this paper we describe a transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed protocol makes it possible to carry a quantum state over different distances with a minimal engineering of the transmission medium and can be implemented and verified on current quantum technology hardware.

[1]  P. Laporta,et al.  Semiclassical motion of a multiband Bloch particle in a time-dependent field: Optical visualization , 2006 .

[2]  Andrew M. Childs,et al.  Quantum algorithms for algebraic problems , 2008, 0812.0380.

[3]  P. Laporta,et al.  Imaging of Bloch oscillations in erbium-doped curved waveguide arrays. , 2006, Optics letters.

[4]  Giuseppe Vallone,et al.  Polarization entangled states measurement on a chip , 2011, Optics + Optoelectronics.

[5]  S. Longhi Quantum‐optical analogies using photonic structures , 2009 .

[6]  Stefan Nolte,et al.  Implementation of quantum and classical discrete fractional Fourier transforms , 2015, Nature Communications.

[7]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[8]  Dario Tamascelli,et al.  Noise-assisted quantum transport and computation , 2012, 1212.2565.

[9]  U. Peschel,et al.  Optical Bloch oscillations in waveguide arrays. , 1998, Optics letters.

[10]  Pérès,et al.  Reversible logic and quantum computers. , 1985, Physical review. A, General physics.

[11]  D. Gauthier,et al.  All-Optical Switching in Rubidium Vapor , 2005, Science.

[12]  Giuseppe Vallone,et al.  Polarization entangled state measurement on a chip , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[13]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.

[14]  Stefan Nolte,et al.  Coherent quantum transport in photonic lattices , 2012, 1207.6080.

[15]  G. Vallone,et al.  Two-particle bosonic-fermionic quantum walk via integrated photonics. , 2011, Physical review letters.

[16]  Fabio Sciarrino,et al.  Rotated waveplates in integrated waveguide optics , 2014, Nature Communications.

[17]  F. Keck,et al.  Dynamics of Bloch oscillations , 2004 .

[18]  A. Szameit,et al.  Photonic coherent state transfer with Hamiltonian dynamics. , 2014, Optics letters.

[19]  Alastair Kay,et al.  Perfect, Efficent, State Transfer and its Application as a Constructive Tool , 2009, 0903.4274.

[20]  A. Tünnermann,et al.  Observation of anharmonic Bloch oscillations. , 2011, Optics letters.

[21]  Walter A. Harrison,et al.  Electronic structure and the properties of solids , 1980 .

[22]  A Bräuer,et al.  Anomalous refraction and diffraction in discrete optical systems. , 2002, Physical review letters.

[23]  A. Crespi,et al.  Anderson localization of entangled photons in an integrated quantum walk , 2013, Nature Photonics.

[24]  Sougato Bose,et al.  Quantum communication through spin chain dynamics: an introductory overview , 2007, 0802.1224.

[25]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[26]  Wannier–Stark resonances in optical and semiconductor superlattices , 2001, quant-ph/0111132.

[27]  Interfacing with Hamiltonian dynamics , 2008, 0807.4025.

[28]  R. Gordon,et al.  Harmonic oscillation in a spatially finite array waveguide. , 2004, Optics letters.

[29]  Georgios M. Nikolopoulos,et al.  Coherent electron wavepacket propagation and entanglement in array of coupled quantum dots , 2004 .

[30]  R. Feynman Simulating physics with computers , 1999 .

[31]  Giuseppe Della Valle,et al.  Fractional Bloch oscillations in photonic lattices , 2013, Nature Communications.

[32]  Localization effects in ac-driven tight-binding lattices , 1996, cond-mat/9603015.

[33]  Stefan Nolte,et al.  Discrete optics in femtosecond-laser-written photonic structures , 2010 .

[34]  Engineering decoherence for two-qubit systems interacting with a classical environment , 2014, 1408.3010.

[35]  D. Witthaut,et al.  Manipulation of matter waves using Bloch and Bloch–Zener oscillations , 2006, quant-ph/0607064.

[36]  F. Bloch Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .

[37]  Electron wavepacket propagation in a chain of coupled quantum dots , 2003, quant-ph/0311041.

[38]  Andreas Bräuer,et al.  Optical Bloch Oscillations in Temperature Tuned Waveguide Arrays , 1999 .

[39]  Matthias Christandl,et al.  Perfect Transfer of Arbitrary States in Quantum Spin Networks , 2005 .

[40]  Roberto Osellame,et al.  Micromachining of photonic devices by femtosecond laser pulses , 2008 .

[41]  M. G. A. Paris,et al.  Dynamics of quantum correlations in colored-noise environments , 2012, 1212.1484.

[42]  Sebastian Dörn Quantum Algorithms for Algebraic Problems ∗ , 2008 .

[43]  Band-gap structure of waveguide arrays and excitation of Floquet-Bloch Solitons , 2002 .