Structural color and its interaction with other color-producing elements: perspectives from spiders

Structural color is produced when nanostructures called schemochromes alter light reflected from a surface through different optic principles, in contrast with other types of colors that are produced when pigments selectively absorb certain wavelengths of light. Research on biogenic photonic nanostructures has focused primarily on bird feathers, butterfly wings and beetle elytra, ignoring other diverse groups such as spiders. We argue that spiders are a good model system to study the functions and evolution of colors in nature for the following reasons. First, these colors clearly function in spiders such as the tarantulas outside of sexual selection, which is likely the dominant driver of the evolution of structural colors in birds and butterflies. Second, within more than 44,000 currently known spider species, colors are used in every possible way based on the same sets of relatively simple materials. Using spiders, we can study how colors evolve to serve different functions under a variety of combinations of driving forces, and how those colors are produced within a relatively simple system. Here, we first review the different color-producing materials and mechanisms (i.e., light absorbing, reflecting and emitting) in birds, butterflies and beetles, the interactions between these different elements, and the functions of colors in different organisms. We then summarize the current state of knowledge of spider colors and compare it with that of birds and insects. We then raise questions including: 1. Could spiders use fluorescence as a mechanism to protect themselves from UV radiation, if they do not have the biosynthetic pathways to produce melanins? 2. What functions could color serve for nearly blind tarantulas? 3. Why are only multilayer nanostructures (thus far) found in spiders, while birds and butterflies use many diverse nanostructures? And, does this limit the diversity of structural colors found in spiders? Answering any of these questions in the future will bring spiders to the forefront of the study of structural colors in nature.

[1]  J. Endler The Color of Light in Forests and Its Implications , 1993 .

[2]  Guanine as a colorant in spiders : development , genetics , phylogenetics and ecology , 2005 .

[3]  M. Herberstein,et al.  UV and Camouflage in Crab Spiders (Thomisidae) , 2013 .

[4]  S. Berthier,et al.  How Nature Produces Blue Color , 2012 .

[5]  C. A. Stover,et al.  Giant birefringent optics in multilayer polymer mirrors , 2000, Science.

[6]  V. Hearing,et al.  The Protective Role of Melanin Against UV Damage in Human Skin † , 2008, Photochemistry and photobiology.

[7]  Matthew D. Shawkey,et al.  Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers , 2011, Biology Letters.

[8]  X. H. Liu,et al.  Structural coloration and photonic pseudogap in natural random close-packing photonic structures. , 2010, Optics express.

[9]  Guy Cox,et al.  Fluorescent pigments in corals are photoprotective , 2000, Nature.

[10]  R. Foelix,et al.  The biology of spiders. , 1987 .

[11]  Shuichi Kinoshita,et al.  Structural colors in nature: the role of regularity and irregularity in the structure. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  Andrew R. Parker,et al.  515 million years of structural colour , 2000 .

[13]  S. Hessel,et al.  Towards a better understanding of carotenoid metabolism in animals. , 2005, Biochimica et biophysica acta.

[14]  A. Parker A geological history of reflecting optics , 2005, Journal of The Royal Society Interface.

[15]  A. Zahavi Mate selection-a selection for a handicap. , 1975, Journal of theoretical biology.

[16]  J. Vigneron,et al.  Beyond butterflies—the diversity of biological photonic crystals , 2007 .

[17]  J. T. Bagnara,et al.  On the blue coloration of vertebrates. , 2007, Pigment cell research.

[18]  R. Gillespie,et al.  De novo characterization of the gene-rich transcriptomes of two color-polymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes , 2013, BMC Genomics.

[19]  D A Parry,et al.  The chitin crystallite in arthropod cuticle. , 1976, Journal of cell science.

[20]  Insect View of Orb Spider Body Colorations , 2013 .

[21]  J. Vigneron,et al.  Cylindrical Bragg mirrors on leg segments of the male Bolivian blueleg tarantula Pamphobeteus antinous (Theraphosidae). , 2013, Optics express.

[22]  D. Hill,et al.  Structural Colors in Spiders , 2013 .

[23]  W. Nentwig,et al.  The Immune System of Spiders , 2013 .

[24]  I. Owens,et al.  Fluorescent signaling in parrots. , 2002, Science.

[25]  S. Rizvi,et al.  Fluorescence of the “fire-chaser” beetle Melanophila acuminata , 2007 .

[26]  Madeline B. Girard,et al.  Multi-Modal Courtship in the Peacock Spider, Maratus volans (O.P.-Cambridge, 1874) , 2011, PloS one.

[27]  I. Cuthill,et al.  Sexual Selection and the Mismeasure of Color , 1994, The American Naturalist.

[28]  Jérôme Casas,et al.  Spectral sensitivity of a colour changing spider. , 2011, Journal of insect physiology.

[29]  A. Nappi,et al.  Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. , 2005, Insect biochemistry and molecular biology.

[30]  Jérôme Casas,et al.  Background colour matching by a crab spider in the field: a community sensory ecology perspective , 2010, Journal of Experimental Biology.

[31]  P. Cassey,et al.  Extraction and analysis of colourful eggshell pigments using HPLC and HPLC/electrospray ionization tandem mass spectrometry. , 2009, Biomedical chromatography : BMC.

[32]  Chad M. Eliason,et al.  How hollow melanosomes affect iridescent colour production in birds , 2013, Proceedings of the Royal Society B: Biological Sciences.

[33]  Jean-Pol Vigneron,et al.  Fluorescence in insects , 2012, Other Conferences.

[34]  J. Endler,et al.  Peacock spiders , 2014, Current Biology.

[35]  Olivier Deparis,et al.  Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae). , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  L. D’Alba,et al.  Iridescent colour production in hairs of blind golden moles (Chrysochloridae) , 2012, Biology Letters.

[37]  Almut Kelber,et al.  Nocturnal colour vision – not as rare as we might think , 2006, Journal of Experimental Biology.

[38]  Shuichi Kinoshita,et al.  Photophysics of Structural Color in the Morpho Butterflies , 2002 .

[39]  D. Rubenstein,et al.  Key ornamental innovations facilitate diversification in an avian radiation , 2013, Proceedings of the National Academy of Sciences.

[40]  D. G. Stavenga,et al.  Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus. , 2011, Optics express.

[41]  Jérôme Casas,et al.  The functional morphology of color changing in a spider: development of ommochrome pigment granules , 2008, Journal of Experimental Biology.

[42]  Jérémie Teyssier,et al.  Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards , 2013, BMC Biology.

[43]  Michael F Land,et al.  Sex-Specific UV and Fluorescence Signals in Jumping Spiders , 2007, Science.

[44]  木下 修一,et al.  Structural colors in the realm of nature , 2008 .

[45]  A. Parker,et al.  A vision for natural photonics , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  L. Chittka,et al.  The evolution of color vision in insects. , 2001, Annual review of entomology.

[47]  M. Shawkey,et al.  Nanostructural self-assembly of iridescent feather barbules through depletion attraction of melanosomes during keratinization , 2012, Journal of The Royal Society Interface.

[48]  Tom D. Schultz,et al.  DEVELOPMENTAL CHANGES IN THE INTERFERENCE REFLECTORS AND COLORATIONS OF TIGER BEETLES (CICINDELA) , 1985 .

[49]  L. Chittka,et al.  Colouration in crab spiders: substrate choice and prey attraction , 2005, Journal of Experimental Biology.

[50]  Daiqin Li,et al.  Extreme ultraviolet sexual dimorphism in jumping spiders (Araneae: Salticidae) , 2006 .

[51]  A predator’s body coloration enhances its foraging profitability by day and night , 2014, Behavioral Ecology and Sociobiology.

[52]  Benny Hallam,et al.  Brilliant Whiteness in Ultrathin Beetle Scales , 2007, Science.

[53]  Andrew R. Parker,et al.  Diffractive optics in spiders , 2003 .

[54]  V. Seligy Ommochrome pigments of spiders , 1972 .

[55]  G. Hill,et al.  Significance of a basal melanin layer to production of non-iridescent structural plumage color: evidence from an amelanotic Steller's jay (Cyanocitta stelleri) , 2006, Journal of Experimental Biology.

[56]  Michael H. Bartl,et al.  Photonic Structures in Biology: A Possible Blueprint for Nanotechnology , 2014 .

[57]  J. Casas,et al.  Turnover of pigment granules: cyclic catabolism and anabolism of ommochromes within epidermal cells. , 2009, Tissue & cell.

[58]  S. Weiner,et al.  Guanine‐Based Biogenic Photonic‐Crystal Arrays in Fish and Spiders , 2010 .

[59]  D. Hill,et al.  An illustrated review of the known peacock spiders of the genus Maratus from Australia, with description of a new species (Araneae: Salticidae: Euophryinae) , 2011 .

[60]  R. Gillespie,et al.  Evolution and ecology of spider coloration. , 1998, Annual review of entomology.

[61]  Reinoud F. Wolffenbuttel,et al.  Infrared micro-spectrometer based on a diffraction grating , 2001 .

[62]  Shin‐Hyun Kim,et al.  Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly. , 2014, Angewandte Chemie.

[63]  R. Friend,et al.  Dye-sensitized solar cell based on a three-dimensional photonic crystal. , 2010, Nano letters.

[64]  Andrew R. Parker,et al.  Natural photonic engineers , 2002 .

[65]  Jean-Pol Vigneron,et al.  Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera) , 2009, Journal of The Royal Society Interface.

[66]  D. Burkhardt,et al.  Biological aspects of bird colouration and avian colour vision including ultraviolet range , 1994, Vision Research.

[67]  S. Reed,et al.  Spiders fluoresce variably across many taxa , 2007, Biology Letters.

[68]  E. Dufresne,et al.  Development of colour-producing β-keratin nanostructures in avian feather barbs , 2009, Journal of The Royal Society Interface.

[69]  M. Shawkey,et al.  Nanostructural basis of rainbow-like iridescence in common bronzewing Phaps chalcoptera feathers. , 2014, Optics express.

[70]  P. Russell Photonic Crystal Fibers , 2003, Science.

[71]  P. Vukusic,et al.  Structural optimization for broadband scattering in several ultra-thin white beetle scales. , 2010, Applied optics.

[72]  R. Bertani Revision, cladistic analysis and biogeography of Typhochlaena C. L. Koch, 1850, Pachistopelma Pocock, 1901 and Iridopelma Pocock, 1901 (Araneae, Theraphosidae, Aviculariinae) , 2012, ZooKeys.

[73]  C. Kropf,et al.  Rapid Colour Change in Spiders , 2013 .

[74]  Jérôme Casas,et al.  Visual fields and eye morphology support color vision in a color-changing crab-spider. , 2012, Arthropod structure & development.

[75]  T. Tan,et al.  Iridescence of a shell of mollusk Haliotis Glabra. , 2004, Optics express.

[76]  M. Eaton Human vision fails to distinguish widespread sexual dichromatism among sexually "monochromatic" birds. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[77]  K. Suh,et al.  25th Anniversary Article: Scalable Multiscale Patterned Structures Inspired by Nature: the Role of Hierarchy , 2014, Advanced materials.

[78]  S. Stainmesse,et al.  Formation and stabilization of a biodegradable polymeric colloidal suspension of nanoparticles , 1995 .

[79]  M. Shawkey,et al.  A protean palette: colour materials and mixing in birds and butterflies , 2009, Journal of The Royal Society Interface.

[80]  SPECTRAL SENSITIVITIES OF PHOTORECEPTORS IN THE OCELLI OF THE TARANTULA APHONOPELMA CHALCODES (ARANEAE, THER PHOSIDAE) , 1989 .

[81]  Jennifer N Cha,et al.  Discovery of a diamond-based photonic crystal structure in beetle scales. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  J. Sambles,et al.  Structurally assisted blackness in butterfly scales , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[83]  T. Goodwin The biochemistry of the carotenoids , 1980 .

[84]  A. Parker,et al.  Structural origin of the green iridescence on the chelicerae of the red-backed jumping spider, Phidippus johnsoni (Salticidae: Araneae). , 2011, Arthropod structure & development.

[85]  Bharat Bhushan,et al.  Structural coloration in nature , 2013 .

[86]  D. Kemp Shedding new light on nature's brightest signals , 2002 .

[87]  D. Stavenga,et al.  Gyroid cuticular structures in butterfly wing scales: biological photonic crystals , 2007, Journal of The Royal Society Interface.

[88]  Shuichi Kinoshita,et al.  Effect of Macroscopic Structure in Iridescent Color of the Peacock Feathers , 2002 .

[89]  J. R. Sambles,et al.  Structural colour: Colour mixing in wing scales of a butterfly , 2000, Nature.

[90]  Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles , 1998 .

[91]  S. Doucet,et al.  Iridescence: a functional perspective , 2009, Journal of The Royal Society Interface.

[92]  Jérôme Casas,et al.  Visual systems: Predator and prey views of spider camouflage , 2002, Nature.

[93]  I. Cuthill,et al.  Tetrachromacy, oil droplets and bird plumage colours , 1998, Journal of Comparative Physiology A.

[94]  Martin Maldovan,et al.  Diamond-structured photonic crystals , 2004, Nature materials.

[95]  Donald P. Greenberg,et al.  Color spaces for computer graphics , 1978, SIGGRAPH.

[96]  S. Kinoshita,et al.  Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[97]  Rodolfo H. Torres,et al.  Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering , 2004, Journal of Experimental Biology.

[98]  O. Riddle OUR KNOWLEDGE OF MELANIN COLOR FORMATION AND ITS BEARING ON THE MENDELIAN DESCRIPTION OF HEREDITY , 1909 .

[99]  N. Marshall,et al.  Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules , 2011, Proceedings of the Royal Society B: Biological Sciences.

[100]  Eli Yablonovitch,et al.  Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw , 2012, Proceedings of the National Academy of Sciences.

[101]  T. Nakamura,et al.  Learning and discrimination of colored papers in jumping spiders (Araneae, Salticidae) , 2000, Journal of Comparative Physiology A.

[102]  Takayuki Hoshino,et al.  Brilliant Blue Observation from a Morpho-Butterfly-Scale Quasi-Structure , 2004 .

[103]  W. Maddison,et al.  Sexual selection driving diversification in jumping spiders , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[104]  M. Vorobyev,et al.  A review of the evolution of animal colour vision and visual communication signals , 2008, Vision Research.

[105]  Matthew S. Taylor,et al.  Scorpion fluorescence and reaction to light , 2012, Animal Behaviour.

[106]  Amy S. Johnson,et al.  Are melanized feather barbs stronger? , 2004, Journal of Experimental Biology.

[107]  G. Hill,et al.  The anatomical basis of sexual dichromatism in non-iridescent ultraviolet-blue structural coloration of feathers , 2005 .

[108]  K. Umbers On the perception, production and function of blue colouration in animals , 2013 .

[109]  R. Sambles,et al.  Sculpted-multilayer optical effects in two species of Papilio butterfly. , 2001, Applied optics.

[110]  Suresh Narayanan,et al.  Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales , 2010, Proceedings of the National Academy of Sciences.

[111]  Matthew B. Toomey,et al.  A description of unique fluorescent yellow pigments in penguin feathers. , 2007, Pigment cell research.

[112]  Hisao Tsukamoto,et al.  Depth Perception from Image Defocus in a Jumping Spider , 2012, Science.

[113]  Michael F Land,et al.  Optics of the ultraviolet reflecting scales of a jumping spider , 2007, Proceedings of the Royal Society B: Biological Sciences.