Multiplexed on-demand storage of polarization qubits in a crystal

A long-lived and multimode quantum memory is a key component needed for the development of quantum communication. Here we present temporally multiplexed storage of 5 photonic polarization qubits encoded onto weak coherent states in a rare-earth-ion doped crystal. Using spin refocusing techniques we can preserve the qubits for more than half a millisecond. The temporal multiplexing allows us to increase the effective rate of the experiment by a factor of 5, which emphasizes the importance of multimode storage for quantum communication. The fidelity upon retrieval is higher than the maximum classical fidelity achievable with qubits encoded onto single photons and we show that the memory fidelity is mainly limited by the memory signal-to-noise ratio. These results show the viability and versatility of long-lived, multimode quantum memories based on rare-earth-ion doped crystals.

[1]  Hoult,et al.  Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation. , 1985, Physical review. A, General physics.

[2]  Andrew A. Maudsley,et al.  Modified Carr-Purcell-Meiboom-Gill sequence for NMR fourier imaging applications , 1986 .

[3]  N. Uesugi,et al.  Ultralong optical dephasing time in Eu(3+):Y(2)SiO(5). , 1991, Optics letters.

[4]  N. Uesugi,et al.  Nonlinear laser spectroscopy of eu3+: Y2sio5 and its application to time-domain optical memory , 1992 .

[5]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[6]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[7]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[8]  Roger M. Macfarlane,et al.  Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu 3 + : Y 2 SiO 5 , 2003 .

[9]  J. Longdell,et al.  Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. , 2005, Physical review letters.

[10]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[11]  A Kuzmich,et al.  Multiplexed memory-insensitive quantum repeaters. , 2007, Physical review letters.

[12]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[13]  I. Walmsley,et al.  Multimode memories in atomic ensembles. , 2008, Physical review letters.

[14]  S. A. Moiseev,et al.  Photon‐echo quantum memory in solid state systems , 2009 .

[15]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[16]  N. Gisin,et al.  Multimode quantum memory based on atomic frequency combs , 2008, 0805.4164.

[17]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[18]  Nicolas Gisin,et al.  Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. , 2010, Nature communications.

[19]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[20]  Yongmin Li,et al.  Efficient quantum memory for light , 2010, Nature.

[21]  T. Chaneliere,et al.  Highly multimode storage in a crystal , 2011 .

[22]  Dieter Suter,et al.  Robust dynamical decoupling for quantum computing and quantum memory. , 2011, Physical review letters.

[23]  Christian Nölleke,et al.  A single-atom quantum memory , 2011, Nature.

[24]  Olivier Pinel,et al.  Spatial-mode storage in a gradient-echo memory , 2012, 1204.3981.

[25]  G. Guo,et al.  Realization of reliable solid-state quantum memory for photonic polarization qubit. , 2012, Physical review letters.

[26]  Matteo Cristiani,et al.  Quantum storage of a photonic polarization qubit in a solid. , 2012, Physical review letters.

[27]  N. Gisin,et al.  Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials. , 2012, Physical review letters.

[28]  Dieter Suter,et al.  Robustness of dynamical decoupling sequences , 2012, 1211.5001.

[29]  H. Riedmatten,et al.  Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory , 2013, 1301.3048.

[30]  A. Nicolas,et al.  A quantum memory for orbital angular momentum photonic qubits , 2013, Nature Photonics.

[31]  Christoph Simon,et al.  Prospective applications of optical quantum memories , 2013, 1306.6904.

[32]  S. Kröll,et al.  Efficient quantum memory using a weakly absorbing sample. , 2013, Physical review letters.

[33]  Christian Hubrich,et al.  Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. , 2013, Physical review letters.

[34]  N. Gisin,et al.  Single-photon-level optical storage in a solid-state spin-wave memory , 2013 .

[35]  Tm 3+ Tm 3+ : Y3Ga5O12 materials for spectrally multiplexed quantum memories. , 2014, Physical review letters.

[36]  Nicolas Gisin,et al.  Cavity-enhanced storage in an optical spin-wave memory , 2014, 1404.3489.

[37]  R. Ricken,et al.  Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. , 2013, Physical review letters.

[38]  H. Riedmatten,et al.  Quantum Light Storage in Solid State Atomic Ensembles , 2015, 1502.00307.

[39]  G. Guo,et al.  Quantum Storage of Three-Dimensional Orbital-Angular-Momentum Entanglement in a Crystal. , 2014, Physical review letters.

[40]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[41]  H. de Riedmatten,et al.  Solid State Spin-Wave Quantum Memory for Time-Bin Qubits. , 2015, Physical review letters.

[42]  Philippe Goldner,et al.  Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory. , 2015, Physical review letters.

[43]  N. Gisin,et al.  Towards highly multimode optical quantum memory for quantum repeaters , 2015, 1512.02936.

[44]  P. Goldner,et al.  Variations in the oscillator strength of the 7F0→5D0 transition in Eu3+:Y2SiO5 single crystals , 2016 .

[45]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).