Comments on explosion problems for hydrogen safety

Abstract The future widespread use of hydrogen as an energy carrier brings in safety issues that have to be addressed before public acceptance can be achieved. The prediction of the consequences of a major accident release of hydrogen into the atmosphere or the contamination of high-pressure hydrogen storage facilities by air entrainment requires a good knowledge of the explosion parameters of hydrogen–air mixtures. The present paper reviews and comments on the current knowledge of dynamic parameters of hydrogen detonation for hazard assessment. The major problem that remains to be resolved involves the understanding of the effect of turbulence on the cellular detonation structure, the propagation of high-speed deflagrations and the transition from deflagration to detonations. It is recommended that future research should be aimed towards experiments that permit the quantitative understanding of the mechanisms of high-speed turbulent combustion rather towards large-scale tests in complex geometries where minimal quantitative information of fundamental significance could be extracted. In spite of its wide flammability and sensitivity to ignition and detonation initiation, it is felt that hydrogen can be produced, stored and handled safely with the appropriate considerations in the design of the hydrogen facilities.

[1]  J. H. Lee,et al.  Numerical investigation of the instability for one-dimensional Chapman–Jouguet detonations with chain-branching kinetics , 2005 .

[2]  C. Westbrook,et al.  A comprehensive modeling study of hydrogen oxidation , 2004 .

[3]  Wolfgang Breitung,et al.  Evaluation of limits for effective flame acceleration in hydrogen mixtures , 2001 .

[4]  R. Knystautas,et al.  High speed turbulent deflagrations and transition to detonation in H2air mixtures , 1984 .

[5]  John H. S. Lee,et al.  On The Transition from Deflagration to Detonation , 1992 .

[6]  On the Universal Role of Turbulence in the Propagation of Deflagrations and Detonations , 1988 .

[7]  John H. S. Lee,et al.  Flame acceleration due to turbulence produced by obstacles , 1980 .

[8]  John H. S. Lee,et al.  Hydrogen combustion and its application to nuclear reactor safety , 1997 .

[9]  D. C. Bull,et al.  Detonation cell structures in fuel/air mixtures , 1982 .

[10]  C. Westbrook,et al.  Gaseous hydrocarbonair detonations , 1991 .

[11]  M. Heitsch,et al.  Integral Large Scale Experiments on Hydrogen Combustion for Severe Accident Code Validation - HYCOM , 2005 .

[12]  R. Knystautas,et al.  A summary of hydrogen-air detonation experiments , 1989 .

[13]  E. Salzano,et al.  Numerical simulation of turbulent gas flames in tubes. , 2002, Journal of hazardous materials.

[14]  Ronald K. Hanson,et al.  The ignition mechanism in irregular structure gaseous detonations , 2005 .

[15]  W. Rehm Recent CFD simulations of turbulent reactive flows with supercomputing for hydrogen safety , 2001 .

[16]  R. Knystautas,et al.  The critical tube diameter for detonation failure in hydrocarbon-air mixtures☆ , 1982 .

[17]  V. I. Alekseev,et al.  Effect of scale on the onset of detonations , 2000 .

[18]  J.H.S. Lee,et al.  An experimental investigation of the onset of detonation , 2005 .

[19]  John H. S. Lee,et al.  Dynamic Parameters of Gaseous Detonations , 1984 .

[20]  S. Dorofeev,et al.  DDT in a smooth tube filled with a hydrogen–oxygen mixture , 2005 .

[21]  W. B. Benedick,et al.  Hydrogen-air detonations , 1982 .

[22]  I. Moen,et al.  Detonation Length Scales for Fuel-Air Explosives , 1983 .

[23]  W. B. Benedick,et al.  Critical charge for the direct initiation of detonation in gaseous fuel-air mixtures , 1985 .

[24]  Yiguang Ju,et al.  Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis , 2007 .

[25]  Andrzej Teodorczyk,et al.  Propagation mechanism of quasi-detonations , 1989 .

[26]  Harold O. Barthel,et al.  Predicted spacings in hydrogen‐oxygen‐argon detonations , 1974 .

[27]  Lee J.H.S.,et al.  Initiation of Gaseous Detonation , 1977 .

[28]  D. Desbordes Aspects stationnaires et transitoires de la détonation dans les gaz : relation avec la structure cellulaire du front , 1990 .

[29]  Elaine S. Oran,et al.  Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture , 2007 .

[30]  A. A. Efimenko,et al.  A model for detonation cell size prediction from chemical kinetics , 2000 .

[31]  S. Tieszen,et al.  The influence of initial pressure and temperature on hydrogen-air-diluent detonations , 1991 .

[32]  G. Ciccarelli,et al.  Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures , 1994 .

[33]  V. A. Subbotin,et al.  Measurement of inhomogeneities of a detonation front in gas mixtures at elevated pressures , 1974 .

[34]  Charles K. Westbrook,et al.  Chemical kinetic prediction of critical parameters in gaseous detonations , 1982 .

[35]  F. E. Belles Detonability and chemical kinetics: Prediction of limits of detonability of hydrogen , 1958 .

[36]  John H. S. Lee,et al.  The propagation mechanism of high speed turbulent deflagrations , 2003 .

[37]  Zhenwei Zhao,et al.  An updated comprehensive kinetic model of hydrogen combustion , 2004 .