Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures

Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis. Reliability of stability data for perovskite solar cells is undermined by a lack of consistency in the test conditions and reporting. This Consensus Statement outlines practices for testing and reporting stability tailoring ISOS protocols for perovskite devices.

Kai Zhu | Yulia Galagan | Harald Hoppe | Ulrich S. Schubert | Michael Grätzel | Anders Hagfeldt | Giorgio Bardizza | Mohammad Khaja Nazeeruddin | Antonio Abate | Jeff Kettle | Christopher J. Fell | Çağla Odabaşı | Shaik Mohammed Zakeeruddin | Eugene A. Katz | Pavel A. Troshin | Trystan Watson | Henry J. Snaith | Aron Walsh | Mark V. Khenkin | Joseph J. Berry | Christoph Brabec | Francesca Brunetti | Vladimir Bulović | Quinn Burlingame | Aldo Di Carlo | Rongrong Cheacharoen | Yi-Bing Cheng | Alexander Colsmann | Stephane Cros | Konrad Domanski | Michał Dusza | Stephen R. Forrest | Diego Di Girolamo | Elizabeth Hauff | Hans Köbler | Marina S. Leite | Shengzhong Liu | Yueh-Lin Loo | Joseph M. Luther | Chang-Qi Ma | Morten Madsen | Matthieu Manceau | Muriel Matheron | Michael McGehee | Rico Meitzner | Ana Flavia Nogueira | Anna Osherov | Nam-Gyu Park | Matthew O. Reese | Francesca De Rossi | Michael Saliba | Samuel D. Stranks | Wolfgang Tress | Vida Turkovic | Sjoerd Veenstra | Iris Visoly-Fisher | Haibing Xie | Ramazan Yıldırım | Monica Lira-Cantu | A. Walsh | S. Forrest | V. Bulović | C. Brabec | Y. Galagan | U. Schubert | E. Katz | N. Park | M. Matheron | J. Berry | J. Luther | F. Brunetti | S. Zakeeruddin | M. Grätzel | A. Hagfeldt | F. De Rossi | T. Watson | Yi-bing Cheng | M. Nazeeruddin | Michael Saliba | H. Snaith | R. Yıldırım | A. Di Carlo | A. Abate | P. Troshin | M. Leite | A. Nogueira | H. Hoppe | S. Veenstra | J. Kettle | C. Fell | Michael D. McGehee | S. Stranks | M. Lira-Cantú | K. Zhu | M. Madsen | I. Visoly-Fisher | Q. Burlingame | W. Tress | M. Dusza | S. Liu | M. Reese | A. Colsmann | M. Manceau | V. Turkovic | R. Meitzner | Y. Loo | E. von Hauff | Rongrong Cheacharoen | Diego Di Girolamo | M. Khenkin | Konrad Domanski | G. Bardizza | S. M. Zakeeruddin | Haibing Xie | S. Cros | Çağla Odabaşı | H. Köbler | A. Osherov | Changxian Ma | Hans Köbler | M. McGehee | Vida Turkovic | Elizabeth von Hauff

[1]  T. Brown,et al.  Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting , 2015 .

[2]  Ralph Gottschalg,et al.  I-V performance characterisation of perovskite solar cells , 2018 .

[3]  Michael Grätzel,et al.  Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability , 2018, Nature Communications.

[4]  Peter Hacke,et al.  Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards , 2018, Nature Energy.

[5]  Xiaofan Deng,et al.  Dynamic study of the light soaking effect on perovskite solar cells by in-situ photoluminescence microscopy , 2018 .

[6]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[7]  Wieslaw Strek,et al.  Significance of light-soaking effect in proper analysis of degradation dynamics of organic solar cells , 2016 .

[8]  Iris Visoly-Fisher,et al.  Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight. , 2015, The journal of physical chemistry letters.

[9]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[10]  Prashant V Kamat,et al.  Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good. , 2015, The journal of physical chemistry letters.

[11]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[12]  Steve Albrecht,et al.  Transient Analysis during Maximum Power Point Tracking (TrAMPPT) to Assess Dynamic Response of Perovskite Solar Cells , 2019, 1906.05028.

[13]  W. Herrmann,et al.  Accurate Power Measurements of High Capacitance PV Modules with Short Pulse Simulators in a Single Flash , 2012 .

[14]  Jenny Nelson,et al.  Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells , 2015 .

[15]  Eugene A. Katz,et al.  Effect of Electron‐Transport Material on Light‐Induced Degradation of Inverted Planar Junction Perovskite Solar Cells , 2017 .

[16]  Elizabeth M. Tennyson,et al.  Machine Learning for Perovskites' Reap-Rest-Recovery Cycle , 2019, Joule.

[17]  T. J. McMahon,et al.  History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review , 2009 .

[18]  G. A. dos Reis Benatto,et al.  Printable luminescent down shifter for enhancing efficiency and stability of organic photovoltaics , 2016 .

[19]  Ripon Bhattacharjee,et al.  How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories , 2017 .

[20]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[21]  Alexander Colsmann,et al.  Ferroelectric Properties of Perovskite Thin Films and Their Implications for Solar Energy Conversion , 2019, Advanced materials.

[22]  J. Gagné Literature Review , 2018, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[23]  Dan Oron,et al.  Self‐Healing Inside APbBr3 Halide Perovskite Crystals , 2018, Advances in Materials.

[24]  P. Sestini,et al.  Kinetics and mechanisms. , 1982 .

[25]  Stephen R. Forrest,et al.  Reliability of Small Molecule Organic Photovoltaics with Electron‐Filtering Compound Buffer Layers , 2016 .

[26]  Suren A. Gevorgyan,et al.  Using ISOS consensus test protocols for development of quantitative life test models in ageing of organic solar cells , 2017 .

[27]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[28]  Keith J Stevenson,et al.  Probing the Intrinsic Thermal and Photochemical Stability of Hybrid and Inorganic Lead Halide Perovskites. , 2017, The journal of physical chemistry letters.

[29]  Anders Hagfeldt,et al.  A chain is as strong as its weakest link – Stability study of MAPbI3 under light and temperature , 2019, Materials Today.

[30]  Yongbo Yuan,et al.  Initial photochemical stability in perovskite solar cells based on the Cu electrode and the appropriate charge transport layers , 2018, Synthetic Metals.

[31]  Miguel Anaya,et al.  Origin of Light-Induced Photophysical Effects in Organic Metal Halide Perovskites in the Presence of Oxygen. , 2018, The journal of physical chemistry letters.

[32]  Michael Saliba,et al.  A full overview of international standards assessing the long-term stability of perovskite solar cells , 2018, Journal of Materials Chemistry A.

[33]  A. Di Carlo,et al.  In situ observation of heat-induced degradation of perovskite solar cells , 2016, Nature Energy.

[34]  Karl Leo,et al.  The influence of laterally inhomogeneous corrosion on electrical and optical calcium moisture barrier characterization. , 2013, The Review of scientific instruments.

[35]  Uli Lemmer,et al.  Temperature Variation-Induced Performance Decline of Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[36]  Chen Gong,et al.  Cesium-Incorporated Triple Cation Perovskites Deliver Fully Reversible and Stable Nanoscale Voltage Response. , 2019, ACS nano.

[37]  Bo Li,et al.  Significant Stability Enhancement of Perovskite Solar Cells by Facile Adhesive Encapsulation , 2018, The Journal of Physical Chemistry C.

[38]  Peter Lund,et al.  Critical analysis on the quality of stability studies of perovskite and dye solar cells , 2018 .

[39]  Peter Veelaert,et al.  A Proposal for Typical Artificial Light Sources for the Characterization of Indoor Photovoltaic Applications , 2014 .

[40]  Rongrong Cheacharoen,et al.  Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling , 2018 .

[41]  Eugene A. Katz,et al.  Initial photo-degradation of PCDTBT:PC70BM solar cells studied under various illumination conditions: Role of the hole transport layer , 2019, Solar Energy.

[42]  Philip Schulz,et al.  Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability , 2018 .

[43]  Kion Norrman,et al.  Concentrated Light for Accelerated Photo Degradation of Polymer Materials , 2013 .

[44]  M. Green,et al.  Solar cell efficiency tables (version 54) , 2019, Progress in Photovoltaics: Research and Applications.

[45]  Christoph J. Brabec,et al.  A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells , 2017, Science.

[46]  Suren A. Gevorgyan,et al.  The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices , 2012 .

[47]  Çağla Odabaşı,et al.  Performance analysis of perovskite solar cells in 2013–2018 using machine-learning tools , 2019, Nano Energy.

[48]  Michael D. McGehee,et al.  Reverse Bias Behavior of Halide Perovskite Solar Cells , 2018 .

[49]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[50]  Changhee Lee,et al.  Influence of Electrical Traps on the Current Density Degradation of Inverted Perovskite Solar Cells , 2019, Materials.

[51]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[52]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[53]  Tobias Abzieher,et al.  Spectral Dependence of Degradation under Ultraviolet Light in Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[54]  Miao Hu,et al.  Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells. , 2017, Nano letters.

[55]  Eugene A. Katz,et al.  Bias-dependent degradation of various solar cells: lessons for stability of perovskite photovoltaics , 2019, Energy & Environmental Science.

[56]  Neil C. Greenham,et al.  Oxygen Degradation in Mesoporous Al2O3/CH3NH3PbI3‐xClx Perovskite Solar Cells: Kinetics and Mechanisms , 2016 .

[57]  A. Dolocan,et al.  Reversible and Irreversible Electric Field Induced Morphological and Interfacial Transformations of Hybrid Lead Iodide Perovskites. , 2017, ACS applied materials & interfaces.

[58]  Feng Gao,et al.  Planar perovskite solar cells with long-term stability using ionic liquid additives , 2019, Nature.

[59]  Felix Lang,et al.  Influence of Radiation on the Properties and the Stability of Hybrid Perovskites , 2018, Advanced materials.

[60]  Kyungjin Cho,et al.  UV Degradation and Recovery of Perovskite Solar Cells , 2016, Scientific Reports.

[61]  Rongrong Cheacharoen,et al.  Encapsulating perovskite solar cells to withstand damp heat and thermal cycling , 2018 .

[62]  Anders Hagfeldt,et al.  PbZrTiO3 ferroelectric oxide as an electron extraction material for stable halide perovskite solar cells , 2019, Sustainable Energy & Fuels.

[63]  Claudine Katan,et al.  Light-activated photocurrent degradation and self-healing in perovskite solar cells , 2016, Nature Communications.

[64]  Suren A. Gevorgyan,et al.  Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .

[65]  Christoph J. Brabec,et al.  Organic photovoltaics for low light applications , 2011 .

[66]  Ajay Ram Srimath Kandada,et al.  Photoinduced Emissive Trap States in Lead Halide Perovskite Semiconductors , 2016 .

[67]  Klaus Weber,et al.  Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation High Bandgap Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[68]  Xia Hong,et al.  Synergistic Effect of Elevated Device Temperature and Excess Charge Carriers on the Rapid Light‐Induced Degradation of Perovskite Solar Cells , 2019, Advanced materials.

[69]  Quinn Burlingame,et al.  Operational Stability and Charge Transport in Fullerene-Based Organic Solar Cells , 2018 .

[70]  Vytautas Getautis,et al.  Enhancing Thermal Stability and Lifetime of Solid-State Dye-Sensitized Solar Cells via Molecular Engineering of the Hole-Transporting Material Spiro-OMeTAD. , 2015, ACS applied materials & interfaces.

[71]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[72]  Ullrich Steiner,et al.  Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2‐CH3NH3I‐H2O System , 2016 .

[73]  Arie Zaban,et al.  Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions. , 2014, The journal of physical chemistry letters.

[74]  Tsutomu Miyasaka,et al.  Steady state performance, photo-induced performance degradation and their relation to transient hysteresis in perovskite solar cells , 2016 .

[75]  Chien-Yu Chen,et al.  Perovskite Photovoltaics for Dim‐Light Applications , 2015 .

[76]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[77]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[78]  A. Doria Home , 2016, The Jerrie Mock Story.

[79]  O. Haillant,et al.  An Arrhenius approach to estimating organic photovoltaic module weathering acceleration factors , 2011 .

[80]  Donghwan Kim,et al.  Electric-Field-Induced Degradation of Methylammonium Lead Iodide Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[81]  Klaus Weber,et al.  Light and elevated temperature induced degradation (LeTID) in perovskite solar cells and development of stable semi-transparent cells , 2018, Solar Energy Materials and Solar Cells.

[82]  Yulia Galagan,et al.  Reconsidering figures of merit for performance and stability of perovskite photovoltaics , 2018 .

[83]  Hiroshi Suga,et al.  Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II) , 1990 .

[84]  Yulia Galagan,et al.  Dynamics of photoinduced degradation of perovskite photovoltaics: from reversible to irreversible processes , 2018 .

[85]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[86]  Zhe Li,et al.  Organic photovoltaic cells – promising indoor light harvesters for self-sustainable electronics , 2018 .

[87]  Anders Hagfeldt,et al.  Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture , 2018, Science.

[88]  Suren A. Gevorgyan,et al.  Worldwide outdoor round robin study of organic photovoltaic devices and modules , 2014 .

[89]  Konrad Wojciechowski,et al.  Mapping Electric Field‐Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films , 2015 .

[90]  Karsten Heuser,et al.  Permeation rate measurements by electrical analysis of calcium corrosion , 2003 .

[91]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[92]  Michael Saliba,et al.  Perovskite solar cells must come of age , 2018, Science.

[93]  Federico Bella,et al.  Perovskite Solar Cells: From the Laboratory to the Assembly Line. , 2018, Chemistry.

[94]  Neil C. Greenham,et al.  Oxygen Degradation in Mesoporous Al2O3/CH3NH3PbI3‐xClx Perovskite Solar Cells: Kinetics and Mechanisms , 2016 .

[95]  S. Beeby,et al.  The effect of the type of illumination on the energy harvesting performance of solar cells , 2015 .

[96]  Joseph J. Berry,et al.  Stability in Perovskite Photovoltaics: A Paradigm for Newfangled Technologies , 2018, ACS Energy Letters.

[97]  Yang Yang,et al.  Addressing the stability issue of perovskite solar cells for commercial applications , 2018, Nature Communications.

[98]  Leone Spiccia,et al.  Fatigue behavior of planar CH 3 NH 3 PbI 3 perovskite solar cells revealed by light on/off diurnal cycling , 2016 .

[99]  Monica Lira-Cantu,et al.  Dye sensitized solar cells based on vertically-aligned ZnO nanorods: effect of UV light on power conversion efficiency and lifetime , 2010 .

[100]  Eugene A. Katz,et al.  Lead iodide as a buffer layer in UV- induced degradation of CH3NH3PbI3 films , 2018 .

[101]  Christine Boeffel,et al.  Experimental comparison of high-performance water vapor permeation measurement methods , 2014 .

[102]  M. Kempe,et al.  Quantitative calcium resistivity based method for accurate and scalable water vapor transmission rate measurement. , 2011, Review of Scientific Instruments.

[103]  M. Freitag,et al.  Dye-sensitized solar cells for efficient power generation under ambient lighting , 2017, Nature Photonics.

[104]  Ganesh D. Sharma,et al.  Toward High‐Performance Polymer Photovoltaic Devices for Low‐Power Indoor Applications , 2017 .

[105]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[106]  Xiaofan Deng,et al.  Electric field induced reversible and irreversible photoluminescence responses in methylammonium lead iodide perovskite , 2016 .

[107]  Harrison Ka Hin Lee,et al.  Is organic photovoltaics promising for indoor applications , 2016 .

[108]  Chu-Chen Chueh,et al.  Abnormal Current-Voltage Hysteresis Induced by Reverse Bias in Organic-Inorganic Hybrid Perovskite Photovoltaics. , 2016, The journal of physical chemistry letters.

[109]  P A Midgley,et al.  Gold and iodine diffusion in large area perovskite solar cells under illumination. , 2017, Nanoscale.

[110]  Rongrong Cheacharoen,et al.  Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. , 2018, Chemical reviews.

[111]  Konrad Wojciechowski,et al.  Efficient and Air‐Stable Mixed‐Cation Lead Mixed‐Halide Perovskite Solar Cells with n‐Doped Organic Electron Extraction Layers , 2017, Advanced materials.

[112]  Michael F Toney,et al.  Humidity-Induced Photoluminescence Hysteresis in Variable Cs/Br Ratio Hybrid Perovskites. , 2018, The journal of physical chemistry letters.

[113]  Suren A. Gevorgyan,et al.  An inter-laboratory stability study of roll-to-roll coated flexible polymer solar modules , 2011 .

[114]  Jianxin Tang,et al.  Unraveling Photostability of Mixed Cation Perovskite Films in Extreme Environment , 2018, Advanced Optical Materials.

[115]  Dieter Neher,et al.  Measuring Aging Stability of Perovskite Solar Cells , 2018 .

[116]  Yanfa Yan,et al.  Tracking the maximum power point of hysteretic perovskite solar cells using a predictive algorithm , 2017 .

[117]  Amador Pérez-Tomás,et al.  Performance and stability of mixed FAPbI3(0.85)MAPbBr3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation , 2016 .

[118]  A. Rosenthal,et al.  A ten year review of performance of photovoltaic systems , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[119]  Laura M. Herz,et al.  High irradiance performance of metal halide perovskites for concentrator photovoltaics , 2018, Nature Energy.

[120]  M. Seyedmahmoudian,et al.  Simulation and Hardware Implementation of New Maximum Power Point Tracking Technique for Partially Shaded PV System Using Hybrid DEPSO Method , 2015, IEEE Transactions on Sustainable Energy.

[121]  Peter Engelhart,et al.  Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature , 2015 .

[122]  Ashraf Uddin,et al.  Encapsulation of Organic and Perovskite Solar Cells: A Review , 2019, Coatings.

[123]  Eiichi Nakamura,et al.  Disodium Benzodipyrrole Sulfonate as Neutral Hole-Transporting Materials for Perovskite Solar Cells. , 2018, Journal of the American Chemical Society.

[124]  Mohammad Khaja Nazeeruddin,et al.  Outdoor Performance and Stability under Elevated Temperatures and Long‐Term Light Soaking of Triple‐Layer Mesoporous Perovskite Photovoltaics , 2015 .

[125]  Yang Yang,et al.  Make perovskite solar cells stable , 2017, Nature.

[126]  Dirk Jordan,et al.  A framework for a comparative accelerated testing standard for PV modules , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[127]  Bin Hu,et al.  Perovskite Solar Cells: Revealing Underlying Processes Involved in Light Soaking Effects and Hysteresis Phenomena in Perovskite Solar Cells (Adv. Energy Mater. 14/2015) , 2015 .

[128]  Peng Gao,et al.  Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells , 2015 .

[129]  A. Braun,et al.  Concentrated sunlight for accelerated stability testing of organic photovoltaic materials: towards decoupling light intensity and temperature , 2015 .

[130]  Bin Hu,et al.  Revealing Underlying Processes Involved in Light Soaking Effects and Hysteresis Phenomena in Perovskite Solar Cells , 2015 .

[131]  T. Watson,et al.  Outdoor performance monitoring of perovskite solar cell mini-modules: Diurnal performance, observance of reversible degradation and variation with climatic performance , 2018, Solar Energy.

[132]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[133]  D. Shinar BEN-GURION UNIVERSITY OF THE NEGEV , 2012 .

[134]  Seh-Won Ahn,et al.  Investigation of Thermally Induced Degradation in CH3NH3PbI3 Perovskite Solar Cells using In-situ Synchrotron Radiation Analysis , 2017, Scientific Reports.

[135]  Harrison Ka Hin Lee,et al.  Dark electrical bias effects on moisture-induced degradation in inverted lead halide perovskite solar cells measured by using advanced chemical probes , 2018 .

[136]  Iris Visoly-Fisher,et al.  Effect of Halide Composition on the Photochemical Stability of Perovskite Photovoltaic Materials. , 2016, ChemSusChem.

[137]  Thomas M. Brown,et al.  Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination , 2017, Nano Research.

[138]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[139]  Keith Emery Solar simulators and I-V measurement methods , 1986 .

[140]  Jianxin Tang,et al.  Photostability of Perovskite Solar Cells: Unraveling Photostability of Mixed Cation Perovskite Films in Extreme Environment (Advanced Optical Materials 20/2018) , 2018, Advanced Optical Materials.

[141]  Aldo Di Carlo,et al.  Encapsulation for long-term stability enhancement of perovskite solar cells , 2016 .

[142]  Saif A. Haque,et al.  Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells , 2016 .

[143]  Wenchao Huang,et al.  Fatigue stability of CH3NH3PbI3 based perovskite solar cells in day/night cycling , 2019, Nano Energy.

[144]  Michael Grätzel,et al.  Hill climbing hysteresis of perovskite‐based solar cells: a maximum power point tracking investigation , 2017 .

[145]  Michael Grätzel,et al.  Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells , 2018, Nature Energy.

[146]  Anders Hagfeldt,et al.  Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions , 2019, Nature Energy.

[147]  Stéphane Cros,et al.  Optical calcium test for measurement of multiple permeation pathways in flexible organic optoelectronic encapsulation. , 2019, The Review of scientific instruments.

[148]  Feng Liu,et al.  Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. , 2015, Journal of the American Chemical Society.

[149]  Michael Saliba,et al.  Polyelemental, Multicomponent Perovskite Semiconductor Libraries through Combinatorial Screening , 2019, Proceedings of the International Conference on Perovskite Thin Film Photovoltaics and Perovskite Photonics and Optoelectronics.

[150]  Ning Wang,et al.  All‐Carbon‐Electrode‐Based Endurable Flexible Perovskite Solar Cells , 2018 .

[151]  Martin A. Green,et al.  Solar cell efficiency tables (Version 53) , 2018, Progress in Photovoltaics: Research and Applications.

[152]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[153]  Kai Zhu,et al.  Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells , 2018 .

[154]  L. Quan,et al.  Efficient and stable solution-processed planar perovskite solar cells via contact passivation , 2017, Science.

[155]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[156]  Monica Lira-Cantu,et al.  Perovskite solar cells: Stability lies at interfaces , 2017, Nature Energy.

[157]  Thomas M. Brown,et al.  Procedures and Practices for Evaluating Thin‐Film Solar Cell Stability , 2015 .