High-Order Methods for Computational Fluid Dynamics: A Brief Review of Compact Differential Formulations on Unstructured Grids

Abstract Popular high-order schemes with compact stencils for Computational Fluid Dynamics (CFD) include Discontinuous Galerkin (DG), Spectral Difference (SD), and Spectral Volume (SV) methods. The recently proposed Flux Reconstruction (FR) approach or Correction Procedure using Reconstruction (CPR) is based on a differential formulation and provides a unifying framework for these high-order schemes. Here we present a brief review of recent progress in FR/CPR research as well as some pacing items and future challenges.

[1]  Beth A. Wingate,et al.  Several new quadrature formulas for polynomial integration in the triangle , 2005 .

[2]  Chi-Wang Shu,et al.  Discontinuous Galerkin Method for Time-Dependent Problems: Survey and Recent Developments , 2014 .

[3]  Zhi J. Wang,et al.  Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems , 2004 .

[4]  Antony Jameson,et al.  Insights from von Neumann analysis of high-order flux reconstruction schemes , 2011, J. Comput. Phys..

[5]  D. Kopriva A Conservative Staggered-Grid Chebyshev Multidomain Method for Compressible Flows. II. A Semi-Structured Method , 1996 .

[6]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[7]  Chunlei Liang,et al.  A comparison of computational efficiencies of spectral difference method and correction procedure via reconstruction , 2013, J. Comput. Phys..

[8]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[9]  Marcel Vinokur,et al.  Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids , 2004 .

[10]  Z. J. Wang,et al.  High-Fidelity Flapping-Wing Aerodynamics Simulations with a Dynamic Unstructured Grid based Spectral Difference Method , 2012 .

[11]  Antony Jameson,et al.  Energy stable flux reconstruction schemes for advection-diffusion problems on triangles , 2013, J. Comput. Phys..

[12]  Z. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids , 2002 .

[13]  Zhi J. Wang,et al.  Adaptive high-order methods in computational fluid dynamics , 2011 .

[14]  Farzad Mashayek,et al.  Validation Study of a Multidomain Spectral Code for Simulation of Turbulent Flows , 2004 .

[15]  Haiyang Gao,et al.  A UNIFYING DISCONTINUOUS FORMULATION FOR HYBRID MESHES , 2011 .

[16]  David A. Kopriva,et al.  A Staggered-Grid Multidomain Spectral Method for the Compressible Navier-Stokes Equations , 1998 .

[17]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[18]  A Polynomial Adaptive LCP Scheme for Viscous Compressible Flows , 2013 .

[19]  Joachim Schöberl,et al.  A stable high-order Spectral Difference method for hyperbolic conservation laws on triangular elements , 2012, J. Comput. Phys..

[20]  Z. Wang High-order methods for the Euler and Navier–Stokes equations on unstructured grids , 2007 .

[21]  Yanan Li,et al.  Evaluation of Optimized CPR Schemes for Computational Aeroacoustics Benchmark Problems , 2013 .

[22]  H. T. Huynh,et al.  A Reconstruction Approach to High -Order Schemes Including Discontinuous Galerkin for Diffusion , 2009 .

[23]  Meilin Yu,et al.  On the accuracy and efficiency of several discontinuous high-order formulations , 2013 .

[24]  Zhi Jian Wang,et al.  A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids , 2009, J. Comput. Phys..

[25]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes for Triangular Elements , 2012, J. Sci. Comput..

[26]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[27]  H. T. Huynh,et al.  Collocation and Galerkin Time-Stepping Methods , 2013 .

[28]  Antony Jameson,et al.  Spectral Difference Method for Unstructured Grids II: Extension to the Euler Equations , 2007, J. Sci. Comput..

[29]  S. Fu,et al.  A PNPM-CPR Method for Navier-Stokes Equations , 2012 .

[30]  Dirk Pflüger,et al.  Lecture Notes in Computational Science and Engineering , 2010 .

[31]  J. S. Cagnone,et al.  A stable interface element scheme for the p-adaptive lifting collocation penalty formulation , 2012, J. Comput. Phys..

[32]  Zhi Jian Wang,et al.  A conservative correction procedure via reconstruction formulation with the Chain-Rule divergence evaluation , 2013, J. Comput. Phys..

[33]  Haiyang Gao,et al.  A High-Order Unifying Discontinuous Formulation for 3D Mixed Grids , 2010 .

[34]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[35]  Antony Jameson,et al.  On the Non-linear Stability of Flux Reconstruction Schemes , 2012, J. Sci. Comput..

[36]  Bin Zhang,et al.  An efficient correction procedure via reconstruction for simulation of viscous flow on moving and deforming domains , 2014, J. Comput. Phys..

[37]  Chunlei Liang,et al.  High-order accurate simulation of low-Mach laminar flow past two side-by-side cylinders using spectral difference method , 2009 .

[38]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[39]  Carl De Boor,et al.  Mathematical aspects of finite elements in partial differential equations : proceedings of a symposium conducted by the Mathematics Research Center, the University of Wisconsin--Madison, April 1-3, 1974 , 1974 .

[40]  John H. Kolias,et al.  A CONSERVATIVE STAGGERED-GRID CHEBYSHEV MULTIDOMAIN METHOD FOR COMPRESSIBLE FLOWS , 1995 .

[41]  Bin Zhang,et al.  An efficient Correction Procedure via Reconstruction for simulation of viscous flow on moving and deforming domain , 2013 .

[42]  Eiji Shima,et al.  Development of a High-Order Flux Reconstruction Scheme for Body-Fitted Cartesian Unstructured Grids , 2013 .

[43]  Yuzhi Sun,et al.  Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow , 2006, J. Comput. Phys..

[44]  Per-Olof Persson,et al.  The Compact Discontinuous Galerkin (CDG) Method for Elliptic Problems , 2007, SIAM J. Sci. Comput..

[45]  Koji Miyaji,et al.  On the Compressible Flow Simulations with Shocks by a Flux Reconstruction Approach , 2011 .

[46]  H. T. Huynh,et al.  Differential Formulation of Discontinuous Galerkin and Related Methods for the Navier-Stokes Equations , 2013 .

[47]  Antony Jameson,et al.  A Proof of the Stability of the Spectral Difference Method for All Orders of Accuracy , 2010, J. Sci. Comput..

[48]  Antony Jameson,et al.  Application of High-Order Energy Stable Flux Reconstruction Schemes to the Euler Equations , 2011 .

[49]  Marcel Vinokur,et al.  Spectral difference method for unstructured grids I: Basic formulation , 2006, J. Comput. Phys..

[50]  Brian C. Vermeire,et al.  ILES Using the Correction Procedure via Reconstruction Scheme , 2013 .

[51]  Yi Lu,et al.  Large Eddy Simulations for 3D Turbine Blades Using a High Order Flux Reconstruction Method , 2013 .

[52]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[53]  Karen Dragon Devine,et al.  A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .

[54]  Antony Jameson,et al.  Energy Stable Flux Reconstruction Schemes for Advection–Diffusion Problems on Tetrahedra , 2014, J. Sci. Comput..

[55]  William N. Dawes,et al.  Investigation of 3D Internal Flow Using New Flux-Reconstruction High Order Method , 2012 .

[56]  H. T. Huynh,et al.  High-Order Methods Including Discontinuous Galerkin by Reconstructions on Triangular Meshes , 2011 .

[57]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..

[58]  Haiyang Gao,et al.  A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids , 2011 .

[59]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[60]  Haiyang Gao,et al.  A High-Order Lifting Collocation Penalty Formulation for the Navier-Stokes Equations on 2-D Mixed Grids , 2009 .

[61]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[62]  Francesco Bassi,et al.  A High Order Discontinuous Galerkin Method for Compressible Turbulent Flows , 2000 .

[63]  Chunlei Liang,et al.  Spectral difference method for compressible flow on unstructured grids with mixed elements , 2009, J. Comput. Phys..

[64]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[65]  Antony Jameson,et al.  An Extension of Energy Stable Flux Reconstruction to Unsteady, Non-linear, Viscous Problems on Mixed Grids , 2011 .

[66]  Antony Jameson,et al.  Energy Stable Flux Reconstruction Schemes for Advection–Diffusion Problems on Tetrahedra , 2013, Journal of Scientific Computing.

[67]  Z. Wang,et al.  Adjoint Based Error Estimation and hp-Adaptation for the High-Order CPR Method , 2013 .