Rational Concept for Reducing Growth Temperature in Vapor-Liquid-Solid Process of Metal Oxide Nanowires.

Vapor-liquid-solid (VLS) growth process of single crystalline metal oxide nanowires has proven the excellent ability to tailor the nanostructures. However, the VLS process of metal oxides in general requires relatively high growth temperatures, which essentially limits the application range. Here we propose a rational concept to reduce the growth temperature in VLS growth process of various metal oxide nanowires. Molecular dynamics (MD) simulation theoretically predicts that it is possible to reduce the growth temperature in VLS process of metal oxide nanowires by precisely controlling the vapor flux. This concept is based on the temperature dependent "material flux window" that the appropriate vapor flux for VLS process of nanowire growth decreases with decreasing the growth temperature. Experimentally, we found the applicability of this concept for reducing the growth temperature of VLS processes for various metal oxides including MgO, SnO2, and ZnO. In addition, we show the successful applications of this concept to VLS nanowire growths of metal oxides onto tin-doped indium oxide (ITO) glass and polyimide (PI) substrates, which require relatively low growth temperatures.

[1]  Pietro Siciliano,et al.  The Role of Surface Oxygen Vacancies in the NO2 Sensing Properties of SnO2 Nanocrystals , 2008 .

[2]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[3]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[4]  Clifton G. Fonstad,et al.  Defect structure and electronic donor levels in stannic oxide crystals , 1973 .

[5]  J. A. Logan,et al.  Near-surface alignment of polymers in rubbed films , 1995, Nature.

[6]  Tomoji Kawai,et al.  Resistive-switching memory effects of NiO nanowire/metal junctions. , 2010, Journal of the American Chemical Society.

[7]  Tomoji Kawai,et al.  Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. , 2009, Journal of the American Chemical Society.

[8]  G. Patriarche,et al.  In situ generation of indium catalysts to grow crystalline silicon nanowires at low temperature on ITO , 2008 .

[9]  Zhaoxiong Xie,et al.  High-sensitivity humidity sensor based on a single SnO(2) nanowire. , 2007, Journal of the American Chemical Society.

[10]  Hidekazu Tanaka,et al.  Epitaxial growth of MgO nanowires by pulsed laser deposition , 2007 .

[11]  H. Dai,et al.  Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition. , 2002, Angewandte Chemie.

[12]  Lars Samuelson,et al.  Solid-phase diffusion mechanism for GaAs nanowire growth , 2004, Microscopy and Microanalysis.

[13]  P. Midgley,et al.  Differentiation of tin oxides using electron energy-loss spectroscopy , 2004 .

[14]  X. Fang,et al.  Impact of preferential indium nucleation on electrical conductivity of vapor-liquid-solid grown indium-tin oxide nanowires. , 2013, Journal of the American Chemical Society.

[15]  X. Fang,et al.  A flux induced crystal phase transition in the vapor-liquid-solid growth of indium-tin oxide nanowires. , 2014, Nanoscale.

[16]  Hidekazu Tanaka,et al.  Mechanism of catalyst diffusion on magnesium oxide nanowire growth , 2007 .

[17]  Charles M Lieber,et al.  Semiconductor nanowire heterostructures , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  Eicke R. Weber,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers. , 2001 .

[19]  Gang Meng,et al.  Nanoscale Thermal Management of Single SnO2 Nanowire: pico-Joule Energy Consumed Molecule Sensor , 2016 .

[20]  Y. Hidaka,et al.  Essential role of catalyst in vapor-liquid-solid growth of compounds. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Influence of in-plane and bridging oxygen vacancies of SnO2 nanostructures on CH4 sensing at low operating temperatures , 2014, 1508.07436.

[22]  Y. Hidaka,et al.  Study on transport pathway in oxide nanowire growth by using spacing-controlled regular array , 2011 .

[23]  Heon-Jin Choi,et al.  Controlled growth of ZnO nanowires and their optical properties , 2002 .

[24]  Xiaomin Li,et al.  Nanoscale Size-Selective Deposition of Nanowires by Micrometer Scale Hydrophilic Patterns , 2014, Scientific Reports.

[25]  Hugh R. Brown,et al.  NEXAFS Studies on the Surface Orientation of Buffed Polyimides , 1996 .

[26]  Interfacial effect on metal/oxide nanowire junctions , 2010 .

[27]  Peidong Yang,et al.  Controlled growth of Si nanowire arrays for device integration. , 2005, Nano letters.

[28]  Lars Samuelson,et al.  Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. , 2005, Nano letters.

[29]  Tomoji Kawai,et al.  Intrinsic mechanisms of memristive switching. , 2011, Nano letters.

[30]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[31]  Joseph Ford,et al.  Numerical Experiments on the Stochastic Behavior of a Lennard-Jones Gas System , 1973 .

[32]  Philippe M. Vereecken,et al.  Plasma-enhanced chemical vapour deposition growth of Si nanowires with low melting point metal catalysts: an effective alternative to Au-mediated growth , 2007 .

[33]  Yun Jeong Hwang,et al.  High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. , 2009, Nano letters.

[34]  Seiji Takeda,et al.  Rational Concept for Designing Vapor-Liquid-Solid Growth of Single Crystalline Metal Oxide Nanowires. , 2015, Nano letters.

[35]  西岡 一水 Homogeneous nucleation and growth of droplets in vapors, J. Feder, K. C. Russell, J.Lothe and G. M. Pound, Advances in Phys., 15, 111-178(1966) : 気相からの均一核生成理論 , 1976 .

[36]  E. Boyden,et al.  Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. , 2011, Nature materials.

[37]  H. Matsui,et al.  Enhancement of Oxide VLS Growth by Carbon on Substrate Surface , 2008 .

[38]  Masateru Taniguchi,et al.  Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. , 2010, Nano letters.

[39]  M. Meyyappan,et al.  Growth of Epitaxial Nanowires at the Junctions of Nanowalls , 2003, Science.

[40]  P. Chu,et al.  Optical identification of oxygen vacancy types in SnO2 nanocrystals , 2013 .