Coherence Maps for Blood Flow Exploration

Blood flow data from direct measurements (4D flow MRI) or numerical simulations opens new possibilities for the understanding of the development of cardiac diseases. However, before this new data can be used in clinical studies or for diagnosis, it is important to develop a notion of the characteristics of typical flow structures. To support this process we developed a novel blood flow clustering and exploration method. The method builds on the concept of coherent flow structures. Coherence maps for cross-sectional slices are defined to show the overall degree of coherence of the flow. In coherent regions the method summarizes the dominant blood flow using a small number of pathline representatives. In contrast to other clustering approaches the clustering is restricted to coherent regions and pathlines with low coherence values, which are not suitable for clustering and thus are not forced into clusters. The coherence map is based on the Finite-time Lyapunov Exponent (FTLE). It is created on selected planes in the inflow respective outflow area of a region of interest. The FTLE value measures the rate of separation of pathlines originating from this plane. Different to previous work using FTLE we do not focus on separating extremal lines but on local minima and regions of low FTLE intensities to extract coherent flow. The coherence map and the extracted clusters serve as basis for the flow exploration. The extracted clusters can be selected and inspected individually. Their flow rate and coherence provide a measure for their significance. Switching off clusters reduces the amount of occlusion and reveals the remaining part of the flow. The non-coherent regions can also be explored by interactive manual pathline seeding in the coherence map.

[1]  Rüdiger Westermann,et al.  A View-Dependent and Inter-Frame Coherent Visualization of Integral Lines using Screen Contribution , 2011, VMV.

[2]  Charles A. Taylor,et al.  Characterization of Coherent Structures in the Cardiovascular System , 2008, Annals of Biomedical Engineering.

[3]  Greg Byrne,et al.  Vortex Dynamics in Cerebral Aneurysms , 2013 .

[4]  Bernhard Preim,et al.  The FLOWLENS: A Focus-and-Context Visualization Approach for Exploration of Blood Flow in Cerebral Aneurysms , 2011, IEEE Transactions on Visualization and Computer Graphics.

[5]  Hans Hagen,et al.  Efficient Computation and Visualization of Coherent Structures in Fluid Flow Applications , 2007, IEEE Transactions on Visualization and Computer Graphics.

[6]  Joerg Meyer,et al.  Pathline predicates and unsteady flow structures , 2008, The Visual Computer.

[7]  Anna Vilanova,et al.  Evaluation of fiber clustering methods for diffusion tensor imaging , 2005, VIS 05. IEEE Visualization, 2005..

[8]  Silvia Born,et al.  Illustrative visualization of cardiac and aortic blood flow from 4D MRI data , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[9]  J. Marsden,et al.  Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows , 2005 .

[10]  Silvia Born,et al.  Visual Analysis of Cardiac 4D MRI Blood Flow Using Line Predicates , 2013, IEEE Transactions on Visualization and Computer Graphics.

[11]  Bernhard Preim,et al.  A Survey of Cardiac 4D PC-MRI Data Processing , 2015, VCBM.

[12]  Petter Dyverfeldt,et al.  Semi-automatic quantification of 4D left ventricular blood flow , 2010, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[13]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[14]  Kamran Mohseni,et al.  A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures. , 2010, Chaos.

[15]  Helwig Hauser,et al.  Straightening Tubular Flow for Side-by-Side Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[16]  Xavier Tricoche,et al.  Interactive Computation and Rendering of Finite-Time Lyapunov Exponent Fields , 2012, IEEE Transactions on Visualization and Computer Graphics.

[17]  Timo Ropinski,et al.  Inviwo - An extensible, multi-purpose visualization framework , 2015, 2015 IEEE Scientific Visualization Conference (SciVis).

[18]  Xavier Tricoche,et al.  Surface techniques for vortex visualization , 2004, VISSYM'04.

[19]  Hans-Christian Hege,et al.  Localized Finite-time Lyapunov Exponent for Unsteady Flow Analysis , 2009, VMV.

[20]  Kai Lawonn,et al.  On the Evaluation of a Semi-Automatic Vortex Flow Classification in 4D PC-MRI Data of the Aorta , 2016, EuroRV³@EuroVis.

[21]  Elaine Cohen,et al.  Understanding Quasi-Periodic Fieldlines and Their Topology in Toroidal Magnetic Fields , 2012 .

[22]  A. Hussain Coherent structures—reality and myth , 1983 .

[23]  Hans-Christian Hege,et al.  On the Elusive Concept of Lagrangian Coherent Structures , 2012 .

[24]  B. R. Noack,et al.  Acceleration feature points of unsteady shear flows , 2014, 1401.2462.

[25]  Filip Sadlo,et al.  A Comparison of Finite-Time and Finite-Size Lyapunov Exponents , 2014, Topological Methods in Data Analysis and Visualization.

[26]  Andrea Fuster,et al.  Characterization of Blood-Flow Patterns from Phase-Contrast MRI Velocity Fields , 2014, EuroVis.

[27]  Thomas Ertl,et al.  Efficient Parallel Vectors Feature Extraction from Higher‐Order Data , 2011, Comput. Graph. Forum.

[28]  Kenneth I. Joy,et al.  Analysis of Time-Dependent Flow-Sensitive PC-MRI Data , 2012, IEEE Transactions on Visualization and Computer Graphics.

[29]  Filip Sadlo,et al.  Efficient Visualization of Lagrangian Coherent Structures by Filtered AMR Ridge Extraction , 2007, IEEE Transactions on Visualization and Computer Graphics.

[30]  Pak Chung Wong,et al.  Exploring vector fields with distribution-based streamline analysis , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[31]  Kwan-Liu Ma,et al.  View-Dependent Streamlines for 3D Vector Fields , 2010, IEEE Transactions on Visualization and Computer Graphics.

[32]  Matteo Astorino,et al.  Computational analysis of an aortic valve jet with Lagrangian coherent structures. , 2010, Chaos.

[33]  Christian Rössl,et al.  Opacity optimization for 3D line fields , 2013, ACM Trans. Graph..

[34]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[35]  Ching-Kuang Shene,et al.  Hierarchical Streamline Bundles , 2012, IEEE Transactions on Visualization and Computer Graphics.

[36]  Kwan-Liu Ma,et al.  An Illustrative Visualization Framework for 3D Vector Fields , 2011, Comput. Graph. Forum.

[37]  Bernhard Preim,et al.  Cluster Analysis of Vortical Flow in Simulations of Cerebral Aneurysm Hemodynamics , 2016, IEEE Transactions on Visualization and Computer Graphics.

[38]  Bernhard Preim,et al.  Adapted Surface Visualization of Cerebral Aneurysms with Embedded Blood Flow Information , 2010, VCBM.

[39]  Roger Crawfis,et al.  View point evaluation and streamline filtering for flow visualization , 2011, 2011 IEEE Pacific Visualization Symposium.

[40]  Marcel Breeuwer,et al.  Interactive Virtual Probing of 4D MRI Blood-Flow , 2011, IEEE Transactions on Visualization and Computer Graphics.

[41]  Bernhard Preim,et al.  Automatic Detection and Visualization of Qualitative Hemodynamic Characteristics in Cerebral Aneurysms , 2012, IEEE Transactions on Visualization and Computer Graphics.

[42]  Petter Dyverfeldt,et al.  Atlas-based analysis of 4D flow CMR: Automated vessel segmentation and flow quantification , 2015, Journal of Cardiovascular Magnetic Resonance.

[43]  M. Markl,et al.  Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance , 2011, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[44]  Robert S. Laramee,et al.  Similarity Measures for Enhancing Interactive Streamline Seeding , 2013, IEEE Transactions on Visualization and Computer Graphics.

[45]  Kai Lawonn,et al.  Semi‐automatic Vortex Flow Classification in 4D PC‐MRI Data of the Aorta , 2016, Comput. Graph. Forum.

[46]  Hans-Christian Hege,et al.  Dual streamline seeding , 2009, 2009 IEEE Pacific Visualization Symposium.

[47]  G. Pedrizzetti,et al.  Emerging trends in CV flow visualization. , 2012, JACC. Cardiovascular imaging.

[48]  Hans Hagen,et al.  Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..

[49]  Pierre Alliez,et al.  Farthest point seeding for efficient placement of streamlines , 2005, VIS 05. IEEE Visualization, 2005..

[50]  Bart M. ter Haar Romeny,et al.  Visualization of 4D Blood‐Flow Fields by Spatiotemporal Hierarchical Clustering , 2012, Comput. Graph. Forum.

[51]  Bernhard Preim,et al.  Semi-Automatic Vortex Extraction in 4D PC-MRI Cardiac Blood Flow Data using Line Predicates , 2013, IEEE Transactions on Visualization and Computer Graphics.

[52]  Silvia Born,et al.  Vortex Detection in 4D MRI Data: Using the Proper Orthogonal Decomposition for Improved Noise-Robustness , 2014, EuroVis.

[53]  S. Oeltze,et al.  Evaluation of Streamline Clustering Techniques for Blood Flow Data , 2012 .

[54]  Jonas Lantz,et al.  On Aortic Blood Flow Simulations : Scale-Resolved Image-Based CFD , 2013 .

[55]  Ronald Peikert,et al.  Scale-Space Approaches to FTLE Ridges , 2012 .

[56]  Hans-Christian Hege,et al.  In vitro Study of Hemodynamic Treatment Improvement: Hunterian Ligation of a Fenestrated Basilar Artery Aneurysm after Coiling , 2014, The International journal of artificial organs.