FRAC: A Maple Package for Computing in the Rational Function Field K(X)

In this paper we present the programs package FRAC (= Funciones RACionales) which is designed for performing computations in the rational function field. The main objects in FRAC are rational functions over the field of rational numbers, but extensions to other computable fields can be done in a “natural” way. The key tool is using functional decomposition algorithms. We motivate the interest to work with rational function decomposition by presenting applications to computer science, engineering (CAD), pure mathematics or robotics. We also present some simple examples in order to illustrate the use of FRAC. Finally, we include the synopsis of the main procedures of FRAC.

[1]  Joachim von zur Gathen,et al.  Functional decomposition of polynomials , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[2]  Tomás Recio,et al.  Polynomial Decomposition Algorithm of Almost Quadratic Complexity , 1988, AAECC.

[3]  Andrzej Schinzel,et al.  Selected topics on polynomials , 1982 .

[4]  Susan Landau,et al.  Polynomial Decomposition Algorithms , 1989, J. Symb. Comput..

[5]  Tomás Recio,et al.  An implicitization algorithm with fewer variables , 1995, Comput. Aided Geom. Des..

[6]  U. Helmke The variety of subfields of k(x) , 1990 .

[7]  J. Ritt,et al.  Prime and composite polynomials , 1922 .

[8]  F. Ollivier Inversibility of rational mappings and structural identifiability in automatics , 1989, ISSAC '89.

[9]  Tomás Recio,et al.  Rational Function Decomposition and Gröbner Bases in the Parameterization of Plane Curves (An extended abstract) , 1992, Latin American Symposium on Theoretical Informatics.

[10]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[11]  Chandrajit L. Bajaj,et al.  Computations with Algebraic Curves , 1988, ISSAC.

[12]  David Shannon,et al.  Using Gröbner Bases to Determine Algebra Membership Split Surjective Algebra Homomorphisms Determine Birational Equivalence , 1988, J. Symb. Comput..

[13]  M. Dickerson,et al.  The Functional Decomposition of Polynomials , 1989 .

[14]  M. Fried,et al.  On curves with separated variables , 1969 .

[15]  Thomas W. Sederberg,et al.  Improperly parametrized rational curves , 1986, Comput. Aided Geom. Des..

[16]  Joachim von zur Gathen,et al.  Functional Decomposition of Polynomials: The Tame Case , 1990, J. Symb. Comput..

[17]  Richard Zippel,et al.  Rational function decomposition , 1991, ISSAC '91.

[18]  Tomás Recio,et al.  A practical implementation of two rational function decomposition algorithms , 1992, ISSAC '92.

[19]  César Luis Alonso González Desarrollo, análisis e implementación de algoritmos para la manipulación de variedades paramétricas , 1994 .

[20]  S. Abhyankar Algebraic geometry for scientists and engineers , 1990 .